Cargando…
Evaluation of technical performance of optical surface imaging system using conventional and novel stereotactic radiosurgery algorithms
The Catalyst HD (C‐RAD Positioning AB, Uppsala, Sweden) optical surface imaging (OSI) system is able to manage interfractional patient positioning, intrafractional motion monitoring, and non‐contact respiratory gating without x‐ray exposure for radiation therapy. In recent years, a novel high‐precis...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882109/ https://www.ncbi.nlm.nih.gov/pubmed/33369014 http://dx.doi.org/10.1002/acm2.13152 |
_version_ | 1783650994641436672 |
---|---|
author | Kojima, Hironori Takemura, Akihiro Kurokawa, Shogo Ueda, Shinichi Noto, Kimiya Yokoyama, Haruna Takamatsu, Shigeyuki |
author_facet | Kojima, Hironori Takemura, Akihiro Kurokawa, Shogo Ueda, Shinichi Noto, Kimiya Yokoyama, Haruna Takamatsu, Shigeyuki |
author_sort | Kojima, Hironori |
collection | PubMed |
description | The Catalyst HD (C‐RAD Positioning AB, Uppsala, Sweden) optical surface imaging (OSI) system is able to manage interfractional patient positioning, intrafractional motion monitoring, and non‐contact respiratory gating without x‐ray exposure for radiation therapy. In recent years, a novel high‐precision surface registration algorithm for stereotactic radiosurgery (SRS algorithm) has been released. This study aimed to evaluate the technical performance of the OSI system using rigid phantoms, by comparing the conventional and SRS algorithms. To determine the system’s technical performance, isocenter displacements were calculated by surface image registration via the OSI system using head, thorax, and pelvis rigid phantoms. The reproducibility of positioning was evaluated by the mean value calculated by repeating the registration 10 times, without moving each phantom. The accuracy of positioning was evaluated by the mean value of the residual error, where the 10 offset values given to each phantom were subtracted from the isocenter displacement values. The stability of motion monitoring was evaluated by measuring isocenter drift during 20 min and averaging it over 10 measurements. For the head phantom, all tests were compared with the mask types and algorithms. As a result, for all sites and both algorithms, the reproducibility, accuracy, and stability for translation and rotation were <0.1 mm and <0.1°, <1.0 mm and <1.0°, and <0.1 mm and <0.1°, respectively. In particular, the SRS algorithm had a small absolute error and standard deviation of calculated isocenter displacement, and a significantly higher reproducibility and accuracy than the conventional algorithm (P < 0.01). There was no difference in the stability between the algorithms (P = 0.0280). The SRS algorithm was found to be suitable for the treatment of rigid body sites with less deformation and small area, such as the head and face. |
format | Online Article Text |
id | pubmed-7882109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78821092021-02-19 Evaluation of technical performance of optical surface imaging system using conventional and novel stereotactic radiosurgery algorithms Kojima, Hironori Takemura, Akihiro Kurokawa, Shogo Ueda, Shinichi Noto, Kimiya Yokoyama, Haruna Takamatsu, Shigeyuki J Appl Clin Med Phys Radiation Oncology Physics The Catalyst HD (C‐RAD Positioning AB, Uppsala, Sweden) optical surface imaging (OSI) system is able to manage interfractional patient positioning, intrafractional motion monitoring, and non‐contact respiratory gating without x‐ray exposure for radiation therapy. In recent years, a novel high‐precision surface registration algorithm for stereotactic radiosurgery (SRS algorithm) has been released. This study aimed to evaluate the technical performance of the OSI system using rigid phantoms, by comparing the conventional and SRS algorithms. To determine the system’s technical performance, isocenter displacements were calculated by surface image registration via the OSI system using head, thorax, and pelvis rigid phantoms. The reproducibility of positioning was evaluated by the mean value calculated by repeating the registration 10 times, without moving each phantom. The accuracy of positioning was evaluated by the mean value of the residual error, where the 10 offset values given to each phantom were subtracted from the isocenter displacement values. The stability of motion monitoring was evaluated by measuring isocenter drift during 20 min and averaging it over 10 measurements. For the head phantom, all tests were compared with the mask types and algorithms. As a result, for all sites and both algorithms, the reproducibility, accuracy, and stability for translation and rotation were <0.1 mm and <0.1°, <1.0 mm and <1.0°, and <0.1 mm and <0.1°, respectively. In particular, the SRS algorithm had a small absolute error and standard deviation of calculated isocenter displacement, and a significantly higher reproducibility and accuracy than the conventional algorithm (P < 0.01). There was no difference in the stability between the algorithms (P = 0.0280). The SRS algorithm was found to be suitable for the treatment of rigid body sites with less deformation and small area, such as the head and face. John Wiley and Sons Inc. 2020-12-27 /pmc/articles/PMC7882109/ /pubmed/33369014 http://dx.doi.org/10.1002/acm2.13152 Text en © 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Radiation Oncology Physics Kojima, Hironori Takemura, Akihiro Kurokawa, Shogo Ueda, Shinichi Noto, Kimiya Yokoyama, Haruna Takamatsu, Shigeyuki Evaluation of technical performance of optical surface imaging system using conventional and novel stereotactic radiosurgery algorithms |
title | Evaluation of technical performance of optical surface imaging system using conventional and novel stereotactic radiosurgery algorithms |
title_full | Evaluation of technical performance of optical surface imaging system using conventional and novel stereotactic radiosurgery algorithms |
title_fullStr | Evaluation of technical performance of optical surface imaging system using conventional and novel stereotactic radiosurgery algorithms |
title_full_unstemmed | Evaluation of technical performance of optical surface imaging system using conventional and novel stereotactic radiosurgery algorithms |
title_short | Evaluation of technical performance of optical surface imaging system using conventional and novel stereotactic radiosurgery algorithms |
title_sort | evaluation of technical performance of optical surface imaging system using conventional and novel stereotactic radiosurgery algorithms |
topic | Radiation Oncology Physics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882109/ https://www.ncbi.nlm.nih.gov/pubmed/33369014 http://dx.doi.org/10.1002/acm2.13152 |
work_keys_str_mv | AT kojimahironori evaluationoftechnicalperformanceofopticalsurfaceimagingsystemusingconventionalandnovelstereotacticradiosurgeryalgorithms AT takemuraakihiro evaluationoftechnicalperformanceofopticalsurfaceimagingsystemusingconventionalandnovelstereotacticradiosurgeryalgorithms AT kurokawashogo evaluationoftechnicalperformanceofopticalsurfaceimagingsystemusingconventionalandnovelstereotacticradiosurgeryalgorithms AT uedashinichi evaluationoftechnicalperformanceofopticalsurfaceimagingsystemusingconventionalandnovelstereotacticradiosurgeryalgorithms AT notokimiya evaluationoftechnicalperformanceofopticalsurfaceimagingsystemusingconventionalandnovelstereotacticradiosurgeryalgorithms AT yokoyamaharuna evaluationoftechnicalperformanceofopticalsurfaceimagingsystemusingconventionalandnovelstereotacticradiosurgeryalgorithms AT takamatsushigeyuki evaluationoftechnicalperformanceofopticalsurfaceimagingsystemusingconventionalandnovelstereotacticradiosurgeryalgorithms |