Cargando…

Reduction of superficial radiation dose with bolus in passive scattering proton beam therapy

PURPOSE: In passive scattering proton beam therapy, scattered protons from the snout and aperture increase the superficial dose, however, treatment planning systems (TPSs) based on analytic algorithms (such as proton convolution superposition) are often inaccurate in this aspect. This additional dos...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yeon‐Joo, Kim, Chankyu, Lee, Se Byeong, Kim, Jae‐Sung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882114/
https://www.ncbi.nlm.nih.gov/pubmed/33433064
http://dx.doi.org/10.1002/acm2.13153
_version_ 1783650995831570432
author Kim, Yeon‐Joo
Kim, Chankyu
Lee, Se Byeong
Kim, Jae‐Sung
author_facet Kim, Yeon‐Joo
Kim, Chankyu
Lee, Se Byeong
Kim, Jae‐Sung
author_sort Kim, Yeon‐Joo
collection PubMed
description PURPOSE: In passive scattering proton beam therapy, scattered protons from the snout and aperture increase the superficial dose, however, treatment planning systems (TPSs) based on analytic algorithms (such as proton convolution superposition) are often inaccurate in this aspect. This additional dose can cause permanent alopecia or severe radiation dermatitis. This study aimed to evaluate the effect of bolus on the superficial radiation dose in passive scattering proton beam therapy. METHODS: We drew a clinical target volume (CTV) and a scalp‐p (phantom), and created plans using a TPS for a solid water phantom with and without bolus. We calculated the dose distribution in the established plans independently with Monte Carlo (MC) simulation and measured the actual dose distribution with an array of ion chambers and radiochromic films. To assess the clinical impact of bolus on scalp dose, we conducted independent dose verification using MC simulation in a clinical case. RESULTS: In the solid water phantom without bolus, the calculated scalp‐p volume receiving 190 cGy was 20% with TPS but 80% with MC simulation when the CTV received 200 cGy. With 2 cm bolus, this decreased from 80% to 10% in MC simulation. With the measurements, average superficial dose to the scalp‐p was reduced by 5.2% when 2 cm bolus was applied. In the clinical case, the scalp‐c (clinical) volume receiving 3000 cGy decreased from 74% to 63% when 2 cm bolus was applied. CONCLUSION: This study revealed that bolus can reduce radiation dose at the superficial body area and alleviate toxicity in passive scattering proton beam therapy.
format Online
Article
Text
id pubmed-7882114
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78821142021-02-19 Reduction of superficial radiation dose with bolus in passive scattering proton beam therapy Kim, Yeon‐Joo Kim, Chankyu Lee, Se Byeong Kim, Jae‐Sung J Appl Clin Med Phys Radiation Oncology Physics PURPOSE: In passive scattering proton beam therapy, scattered protons from the snout and aperture increase the superficial dose, however, treatment planning systems (TPSs) based on analytic algorithms (such as proton convolution superposition) are often inaccurate in this aspect. This additional dose can cause permanent alopecia or severe radiation dermatitis. This study aimed to evaluate the effect of bolus on the superficial radiation dose in passive scattering proton beam therapy. METHODS: We drew a clinical target volume (CTV) and a scalp‐p (phantom), and created plans using a TPS for a solid water phantom with and without bolus. We calculated the dose distribution in the established plans independently with Monte Carlo (MC) simulation and measured the actual dose distribution with an array of ion chambers and radiochromic films. To assess the clinical impact of bolus on scalp dose, we conducted independent dose verification using MC simulation in a clinical case. RESULTS: In the solid water phantom without bolus, the calculated scalp‐p volume receiving 190 cGy was 20% with TPS but 80% with MC simulation when the CTV received 200 cGy. With 2 cm bolus, this decreased from 80% to 10% in MC simulation. With the measurements, average superficial dose to the scalp‐p was reduced by 5.2% when 2 cm bolus was applied. In the clinical case, the scalp‐c (clinical) volume receiving 3000 cGy decreased from 74% to 63% when 2 cm bolus was applied. CONCLUSION: This study revealed that bolus can reduce radiation dose at the superficial body area and alleviate toxicity in passive scattering proton beam therapy. John Wiley and Sons Inc. 2021-01-12 /pmc/articles/PMC7882114/ /pubmed/33433064 http://dx.doi.org/10.1002/acm2.13153 Text en © 2021 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Radiation Oncology Physics
Kim, Yeon‐Joo
Kim, Chankyu
Lee, Se Byeong
Kim, Jae‐Sung
Reduction of superficial radiation dose with bolus in passive scattering proton beam therapy
title Reduction of superficial radiation dose with bolus in passive scattering proton beam therapy
title_full Reduction of superficial radiation dose with bolus in passive scattering proton beam therapy
title_fullStr Reduction of superficial radiation dose with bolus in passive scattering proton beam therapy
title_full_unstemmed Reduction of superficial radiation dose with bolus in passive scattering proton beam therapy
title_short Reduction of superficial radiation dose with bolus in passive scattering proton beam therapy
title_sort reduction of superficial radiation dose with bolus in passive scattering proton beam therapy
topic Radiation Oncology Physics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882114/
https://www.ncbi.nlm.nih.gov/pubmed/33433064
http://dx.doi.org/10.1002/acm2.13153
work_keys_str_mv AT kimyeonjoo reductionofsuperficialradiationdosewithbolusinpassivescatteringprotonbeamtherapy
AT kimchankyu reductionofsuperficialradiationdosewithbolusinpassivescatteringprotonbeamtherapy
AT leesebyeong reductionofsuperficialradiationdosewithbolusinpassivescatteringprotonbeamtherapy
AT kimjaesung reductionofsuperficialradiationdosewithbolusinpassivescatteringprotonbeamtherapy