Cargando…
Identification of Exploration and Exploitation Balance in the Silkmoth Olfactory Search Behavior by Information-Theoretic Modeling
Insects search for and find odor sources as their basic behaviors, such as when looking for food or a mate. This has motivated research to describe how they achieve such behavior under turbulent odor plumes with a small number of neurons. Among different insects, the silk moth has been studied owing...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882484/ https://www.ncbi.nlm.nih.gov/pubmed/33597856 http://dx.doi.org/10.3389/fncom.2021.629380 |
_version_ | 1783651056993959936 |
---|---|
author | Hernandez-Reyes, Cesar A. Fukushima, Shumpei Shigaki, Shunsuke Kurabayashi, Daisuke Sakurai, Takeshi Kanzaki, Ryohei Sezutsu, Hideki |
author_facet | Hernandez-Reyes, Cesar A. Fukushima, Shumpei Shigaki, Shunsuke Kurabayashi, Daisuke Sakurai, Takeshi Kanzaki, Ryohei Sezutsu, Hideki |
author_sort | Hernandez-Reyes, Cesar A. |
collection | PubMed |
description | Insects search for and find odor sources as their basic behaviors, such as when looking for food or a mate. This has motivated research to describe how they achieve such behavior under turbulent odor plumes with a small number of neurons. Among different insects, the silk moth has been studied owing to its clear motor response to olfactory input. In past studies, the “programmed behavior” of the silk moth has been modeled as the average duration of a sequence of maneuvers based on the duration of periods without odor hits. However, this model does not fully represent the fine variations in their behavior. In this study, we used silk moth olfactory search trajectories from an experimental virtual reality device. We achieved an accurate input by using optogenetic silk moths that react to blue light. We then modeled such trajectories as a probabilistic learning agent with a belief of possible source locations. We found that maneuvers mismatching the programmed behavior are related to larger entropy decrease, that is, they are more likely to increase the certainty of the belief. This implies that silkmoths include some stochasticity in their search policy to balance the exploration and exploitation of olfactory information by matching or mismatching the programmed behavior model. We believe that this information-theoretic representation of insect behavior is important for the future implementation of olfactory searches in artificial agents such as robots. |
format | Online Article Text |
id | pubmed-7882484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78824842021-02-16 Identification of Exploration and Exploitation Balance in the Silkmoth Olfactory Search Behavior by Information-Theoretic Modeling Hernandez-Reyes, Cesar A. Fukushima, Shumpei Shigaki, Shunsuke Kurabayashi, Daisuke Sakurai, Takeshi Kanzaki, Ryohei Sezutsu, Hideki Front Comput Neurosci Neuroscience Insects search for and find odor sources as their basic behaviors, such as when looking for food or a mate. This has motivated research to describe how they achieve such behavior under turbulent odor plumes with a small number of neurons. Among different insects, the silk moth has been studied owing to its clear motor response to olfactory input. In past studies, the “programmed behavior” of the silk moth has been modeled as the average duration of a sequence of maneuvers based on the duration of periods without odor hits. However, this model does not fully represent the fine variations in their behavior. In this study, we used silk moth olfactory search trajectories from an experimental virtual reality device. We achieved an accurate input by using optogenetic silk moths that react to blue light. We then modeled such trajectories as a probabilistic learning agent with a belief of possible source locations. We found that maneuvers mismatching the programmed behavior are related to larger entropy decrease, that is, they are more likely to increase the certainty of the belief. This implies that silkmoths include some stochasticity in their search policy to balance the exploration and exploitation of olfactory information by matching or mismatching the programmed behavior model. We believe that this information-theoretic representation of insect behavior is important for the future implementation of olfactory searches in artificial agents such as robots. Frontiers Media S.A. 2021-02-01 /pmc/articles/PMC7882484/ /pubmed/33597856 http://dx.doi.org/10.3389/fncom.2021.629380 Text en Copyright © 2021 Hernandez-Reyes, Fukushima, Shigaki, Kurabayashi, Sakurai, Kanzaki and Sezutsu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Hernandez-Reyes, Cesar A. Fukushima, Shumpei Shigaki, Shunsuke Kurabayashi, Daisuke Sakurai, Takeshi Kanzaki, Ryohei Sezutsu, Hideki Identification of Exploration and Exploitation Balance in the Silkmoth Olfactory Search Behavior by Information-Theoretic Modeling |
title | Identification of Exploration and Exploitation Balance in the Silkmoth Olfactory Search Behavior by Information-Theoretic Modeling |
title_full | Identification of Exploration and Exploitation Balance in the Silkmoth Olfactory Search Behavior by Information-Theoretic Modeling |
title_fullStr | Identification of Exploration and Exploitation Balance in the Silkmoth Olfactory Search Behavior by Information-Theoretic Modeling |
title_full_unstemmed | Identification of Exploration and Exploitation Balance in the Silkmoth Olfactory Search Behavior by Information-Theoretic Modeling |
title_short | Identification of Exploration and Exploitation Balance in the Silkmoth Olfactory Search Behavior by Information-Theoretic Modeling |
title_sort | identification of exploration and exploitation balance in the silkmoth olfactory search behavior by information-theoretic modeling |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882484/ https://www.ncbi.nlm.nih.gov/pubmed/33597856 http://dx.doi.org/10.3389/fncom.2021.629380 |
work_keys_str_mv | AT hernandezreyescesara identificationofexplorationandexploitationbalanceinthesilkmotholfactorysearchbehaviorbyinformationtheoreticmodeling AT fukushimashumpei identificationofexplorationandexploitationbalanceinthesilkmotholfactorysearchbehaviorbyinformationtheoreticmodeling AT shigakishunsuke identificationofexplorationandexploitationbalanceinthesilkmotholfactorysearchbehaviorbyinformationtheoreticmodeling AT kurabayashidaisuke identificationofexplorationandexploitationbalanceinthesilkmotholfactorysearchbehaviorbyinformationtheoreticmodeling AT sakuraitakeshi identificationofexplorationandexploitationbalanceinthesilkmotholfactorysearchbehaviorbyinformationtheoreticmodeling AT kanzakiryohei identificationofexplorationandexploitationbalanceinthesilkmotholfactorysearchbehaviorbyinformationtheoreticmodeling AT sezutsuhideki identificationofexplorationandexploitationbalanceinthesilkmotholfactorysearchbehaviorbyinformationtheoreticmodeling |