Cargando…
Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation
The Goldstein-Taylor equations can be thought of as a simplified version of a BGK system, where the velocity variable is constricted to a discrete set of values. It is intimately related to turbulent fluid motion and the telegrapher’s equation. A detailed understanding of the large time behaviour of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882593/ https://www.ncbi.nlm.nih.gov/pubmed/33642614 http://dx.doi.org/10.1007/s10955-021-02702-8 |
_version_ | 1783651081776005120 |
---|---|
author | Arnold, Anton Einav, Amit Signorello, Beatrice Wöhrer, Tobias |
author_facet | Arnold, Anton Einav, Amit Signorello, Beatrice Wöhrer, Tobias |
author_sort | Arnold, Anton |
collection | PubMed |
description | The Goldstein-Taylor equations can be thought of as a simplified version of a BGK system, where the velocity variable is constricted to a discrete set of values. It is intimately related to turbulent fluid motion and the telegrapher’s equation. A detailed understanding of the large time behaviour of the solutions to these equations has been mostly achieved in the case where the relaxation function, measuring the intensity of the relaxation towards equally distributed velocity densities, is constant. The goal of the presented work is to provide a general method to tackle the question of convergence to equilibrium when the relaxation function is not constant, and to do so as quantitatively as possible. In contrast to the usual modal decomposition of the equations, which is natural when the relaxation function is constant, we define a new Lyapunov functional of pseudodifferential nature, one that is motivated by the modal analysis in the constant case, that is able to deal with full spatial dependency of the relaxation function. The approach we develop is robust enough that one can apply it to multi-velocity Goldstein-Taylor models, and achieve explicit rates of convergence. The convergence rate we find, however, is not optimal, as we show by comparing our result to those found in [8]. |
format | Online Article Text |
id | pubmed-7882593 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-78825932021-02-25 Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation Arnold, Anton Einav, Amit Signorello, Beatrice Wöhrer, Tobias J Stat Phys Article The Goldstein-Taylor equations can be thought of as a simplified version of a BGK system, where the velocity variable is constricted to a discrete set of values. It is intimately related to turbulent fluid motion and the telegrapher’s equation. A detailed understanding of the large time behaviour of the solutions to these equations has been mostly achieved in the case where the relaxation function, measuring the intensity of the relaxation towards equally distributed velocity densities, is constant. The goal of the presented work is to provide a general method to tackle the question of convergence to equilibrium when the relaxation function is not constant, and to do so as quantitatively as possible. In contrast to the usual modal decomposition of the equations, which is natural when the relaxation function is constant, we define a new Lyapunov functional of pseudodifferential nature, one that is motivated by the modal analysis in the constant case, that is able to deal with full spatial dependency of the relaxation function. The approach we develop is robust enough that one can apply it to multi-velocity Goldstein-Taylor models, and achieve explicit rates of convergence. The convergence rate we find, however, is not optimal, as we show by comparing our result to those found in [8]. Springer US 2021-02-13 2021 /pmc/articles/PMC7882593/ /pubmed/33642614 http://dx.doi.org/10.1007/s10955-021-02702-8 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Arnold, Anton Einav, Amit Signorello, Beatrice Wöhrer, Tobias Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation |
title | Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation |
title_full | Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation |
title_fullStr | Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation |
title_full_unstemmed | Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation |
title_short | Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation |
title_sort | large time convergence of the non-homogeneous goldstein-taylor equation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882593/ https://www.ncbi.nlm.nih.gov/pubmed/33642614 http://dx.doi.org/10.1007/s10955-021-02702-8 |
work_keys_str_mv | AT arnoldanton largetimeconvergenceofthenonhomogeneousgoldsteintaylorequation AT einavamit largetimeconvergenceofthenonhomogeneousgoldsteintaylorequation AT signorellobeatrice largetimeconvergenceofthenonhomogeneousgoldsteintaylorequation AT wohrertobias largetimeconvergenceofthenonhomogeneousgoldsteintaylorequation |