Cargando…

Potential of watermelon (Citrullus lanatus) to maintain oxidative stability of rooster semen for artificial insemination

Fruits with antioxidant enrichment can be an economically affordable supplement for mitigating oxidative damage prone spermatozoa membrane pathologies. Computer-assisted sperm analyzer and oxidative status were utilized to evaluate the impact of watermelon (Citrullus lanatus) fortification of dextro...

Descripción completa

Detalles Bibliográficos
Autores principales: Jimoh, Olatunji Abubakar, Akinola, Micheal Olawale, Oyeyemi, Bolaji Fatai, Oyeyemi, Wahab Adekunle, Ayodele, Simeon Olugbenga, Omoniyi, Idowu Samuel, Okin-Aminu, Hafsat Ololade
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Animal Sciences and Technology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882837/
https://www.ncbi.nlm.nih.gov/pubmed/33987583
http://dx.doi.org/10.5187/jast.2021.e21
Descripción
Sumario:Fruits with antioxidant enrichment can be an economically affordable supplement for mitigating oxidative damage prone spermatozoa membrane pathologies. Computer-assisted sperm analyzer and oxidative status were utilized to evaluate the impact of watermelon (Citrullus lanatus) fortification of dextrose saline as diluent for rooster semen and fertility response of hens inseminated. Watermelon juice and dextrose saline were used to formulate diluent of 7 treatments consisting of unextended semen (positive control), 10%, 20%, 30%, 40%, 50% and only dextrose saline (negative control) designated as Treatments 1–7. Pooled semen was obtained from fertile roosters and equilibrated with diluents at ratio 1:2 in the various treatments and were evaluated using computer software coupled microscope and seminal oxidative status assay. 168 laying hens randomly divided into 7 treatment of 8 replicates and 3 hen per replicate. Hen were everted, and semen (2 × 10(8) Spermatozoa) deposited intra-vagina and eggs collected over 8 weeks to assess fertility and hatchability of eggs laid. The result obtained revealed that watermelon-dextrose saline rooster semen diluent enhanced progressive motility, sperm kinetics and lowered non-progressive motility in T2–T6 compared to T7 over the 3 hours of evaluation. Watermelon addition to rooster semen diluent enhance the antioxidant capacity of rooster semen and lowered lipid peroxide generation. The percentage fertility was highest in T3 (81.01%) and T4 (81.24%) with lowest value obtained in T7 (73.46%). The hatchability of eggs set of hens inseminated with undiluted semen (71.46%) was lower than values for hens inseminated with watermelon inclusive extended semen (75.71%–80.39%). The optimal inclusion of 30%–40% watermelon in dextrose saline diluent enhance rooster semen kinetics, seminal oxidative stability and egg fertility.