Cargando…

Effects of porcine blood plasma on the emulsion stability, physicochemical characteristics and textural attributes of emulsified pork batter

This study was conducted to determine the effects of addition of porcine blood plasma (PBP) to the emulsified pork batter as a substitute for the soy protein isolate (SPI) or sodium caseinate (SC) on the emulsion stability and physicochemical and textural properties of the emulsified pork batter. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Sangkeun, Choi, Jungseok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Animal Sciences and Technology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882847/
https://www.ncbi.nlm.nih.gov/pubmed/33987594
http://dx.doi.org/10.5187/jast.2021.e19
Descripción
Sumario:This study was conducted to determine the effects of addition of porcine blood plasma (PBP) to the emulsified pork batter as a substitute for the soy protein isolate (SPI) or sodium caseinate (SC) on the emulsion stability and physicochemical and textural properties of the emulsified pork batter. A total of 10 treatments were no addition and 0.5%, 1.0%, and 1.5% addition with each of SPI, SC, and PBP. The moisture and fat losses of the pork emulsion after cooking decreased with increasing percentage of any of SPI, SC, and PBP (p < 0.05). Further, moisture loss was less for the PBP treatment than for SPI and SC (p < 0.05). The lightness, redness, and whiteness of the emulsified pork batter decreased (p < 0.05) due to any of the SPI, SC, and PBP treatments whereas the yellowness and the chroma and hue values increased. The lightness, redness, yellowness, and chroma and hue values differed also among the SPI, SC, and PBP treatments (p < 0.05); however, the numerical difference between any two types of substitutes was less than 8% of the two corresponding means in all of these variables. Textural properties, including the hardness, cohesiveness, springiness, gumminess, chewiness, and adhesiveness, were not influenced by any of the SPI, SC, and PBP treatments (p > 0.05), except for greater gumminess and chewiness for the PBP treatment than for SC. The present results indicate that PBP is comparable or even superior to SPI or SC in its emulsion-stabilizing effect and therefore could be used a substitute for the latter as a non-protein ingredient of pork emulsion batter.