Cargando…
Match and mismatch: Integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects
Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non‐consumptive effects. Non‐consumptive effects can often exceed consumptive effects, but their relative importanc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882981/ https://www.ncbi.nlm.nih.gov/pubmed/33614012 http://dx.doi.org/10.1002/ece3.7181 |
_version_ | 1783651163027013632 |
---|---|
author | Pintar, Matthew R. Resetarits, William J. |
author_facet | Pintar, Matthew R. Resetarits, William J. |
author_sort | Pintar, Matthew R. |
collection | PubMed |
description | Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non‐consumptive effects. Non‐consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non‐consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non‐consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species‐specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species‐specific habitat selection by prey can be either predator‐avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non‐consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species‐specific consumptive and non‐consumptive effects is important to understand patterns of species diversity across landscapes. |
format | Online Article Text |
id | pubmed-7882981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78829812021-02-19 Match and mismatch: Integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects Pintar, Matthew R. Resetarits, William J. Ecol Evol Original Research Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non‐consumptive effects. Non‐consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non‐consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non‐consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species‐specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species‐specific habitat selection by prey can be either predator‐avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non‐consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species‐specific consumptive and non‐consumptive effects is important to understand patterns of species diversity across landscapes. John Wiley and Sons Inc. 2021-01-28 /pmc/articles/PMC7882981/ /pubmed/33614012 http://dx.doi.org/10.1002/ece3.7181 Text en © 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Pintar, Matthew R. Resetarits, William J. Match and mismatch: Integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects |
title | Match and mismatch: Integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects |
title_full | Match and mismatch: Integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects |
title_fullStr | Match and mismatch: Integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects |
title_full_unstemmed | Match and mismatch: Integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects |
title_short | Match and mismatch: Integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects |
title_sort | match and mismatch: integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882981/ https://www.ncbi.nlm.nih.gov/pubmed/33614012 http://dx.doi.org/10.1002/ece3.7181 |
work_keys_str_mv | AT pintarmatthewr matchandmismatchintegratingconsumptiveeffectsofpredatorspreytraitsandhabitatselectionincolonizingaquaticinsects AT resetaritswilliamj matchandmismatchintegratingconsumptiveeffectsofpredatorspreytraitsandhabitatselectionincolonizingaquaticinsects |