Cargando…

An independent poor-prognosis subtype of hepatocellular carcinoma based on the tumor microenvironment

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly malignant tumor with a particularly poor prognosis. The tumor microenvironment (TME) is closely associated with tumorigenesis, progression, and treatment. However, the relationship between TME genes and HCC patient prognosis is poorly understood...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Junfeng, Lou, Jianying, Fu, Lei, Jin, Qu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883156/
https://www.ncbi.nlm.nih.gov/pubmed/33567957
http://dx.doi.org/10.1177/0300060520980646
Descripción
Sumario:BACKGROUND: Hepatocellular carcinoma (HCC) is a highly malignant tumor with a particularly poor prognosis. The tumor microenvironment (TME) is closely associated with tumorigenesis, progression, and treatment. However, the relationship between TME genes and HCC patient prognosis is poorly understood. METHODS: In this study, we identified two prognostic subtypes based on the TME using data from The Cancer Genome Atlas and Gene Expression Omnibus. The Microenvironment Cell Populations-counter method was used to evaluate immune cell infiltration in HCC. Differentially expressed genes between molecular subtypes were calculated with the Limma package, and clusterProfiler was used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses to identify genes related to the independent subtypes. We also integrated mRNA expression data into our bioinformatics analysis. RESULTS: We identified 4227 TME-associated genes and 640 genes related to the prognosis of HCC. We defined two major subtypes (Clusters 1 and 2) based on the analysis of TME-associated gene expression. Cluster 1 was characterized by increased expression of immune-associated genes and a worse prognosis than Cluster 2. CONCLUSIONS: The identification of these HCC subtypes based on the TME provides further insight into the molecular mechanisms and prediction of HCC prognosis.