Cargando…

Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110)

[Image: see text] Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation...

Descripción completa

Detalles Bibliográficos
Autores principales: Sättele, Marie S., Windischbacher, Andreas, Egger, Larissa, Haags, Anja, Hurdax, Philipp, Kirschner, Hans, Gottwald, Alexander, Richter, Mathias, Bocquet, François C., Soubatch, Serguei, Tautz, F. Stefan, Bettinger, Holger F., Peisert, Heiko, Chassé, Thomas, Ramsey, Michael G., Puschnig, Peter, Koller, Georg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883341/
https://www.ncbi.nlm.nih.gov/pubmed/33603943
http://dx.doi.org/10.1021/acs.jpcc.0c09062
_version_ 1783651198338859008
author Sättele, Marie S.
Windischbacher, Andreas
Egger, Larissa
Haags, Anja
Hurdax, Philipp
Kirschner, Hans
Gottwald, Alexander
Richter, Mathias
Bocquet, François C.
Soubatch, Serguei
Tautz, F. Stefan
Bettinger, Holger F.
Peisert, Heiko
Chassé, Thomas
Ramsey, Michael G.
Puschnig, Peter
Koller, Georg
author_facet Sättele, Marie S.
Windischbacher, Andreas
Egger, Larissa
Haags, Anja
Hurdax, Philipp
Kirschner, Hans
Gottwald, Alexander
Richter, Mathias
Bocquet, François C.
Soubatch, Serguei
Tautz, F. Stefan
Bettinger, Holger F.
Peisert, Heiko
Chassé, Thomas
Ramsey, Michael G.
Puschnig, Peter
Koller, Georg
author_sort Sättele, Marie S.
collection PubMed
description [Image: see text] Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation of a highly oriented monolayer of heptacene on Ag(110) by thermal cycloreversion of diheptacenes. In a combined effort of angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations, we characterize the electronic and structural properties of the molecule on the surface in detail. Our investigations allow us to unambiguously confirm the successful fabrication of a highly oriented complete monolayer of heptacene and to describe its electronic structure. By comparing experimental momentum maps of photoemission from frontier orbitals of heptacene and pentacene, we shed light on differences between these two acenes regarding their molecular orientation and energy-level alignment on the metal surfaces.
format Online
Article
Text
id pubmed-7883341
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-78833412021-02-16 Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110) Sättele, Marie S. Windischbacher, Andreas Egger, Larissa Haags, Anja Hurdax, Philipp Kirschner, Hans Gottwald, Alexander Richter, Mathias Bocquet, François C. Soubatch, Serguei Tautz, F. Stefan Bettinger, Holger F. Peisert, Heiko Chassé, Thomas Ramsey, Michael G. Puschnig, Peter Koller, Georg J Phys Chem C Nanomater Interfaces [Image: see text] Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation of a highly oriented monolayer of heptacene on Ag(110) by thermal cycloreversion of diheptacenes. In a combined effort of angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations, we characterize the electronic and structural properties of the molecule on the surface in detail. Our investigations allow us to unambiguously confirm the successful fabrication of a highly oriented complete monolayer of heptacene and to describe its electronic structure. By comparing experimental momentum maps of photoemission from frontier orbitals of heptacene and pentacene, we shed light on differences between these two acenes regarding their molecular orientation and energy-level alignment on the metal surfaces. American Chemical Society 2021-02-03 2021-02-11 /pmc/articles/PMC7883341/ /pubmed/33603943 http://dx.doi.org/10.1021/acs.jpcc.0c09062 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Sättele, Marie S.
Windischbacher, Andreas
Egger, Larissa
Haags, Anja
Hurdax, Philipp
Kirschner, Hans
Gottwald, Alexander
Richter, Mathias
Bocquet, François C.
Soubatch, Serguei
Tautz, F. Stefan
Bettinger, Holger F.
Peisert, Heiko
Chassé, Thomas
Ramsey, Michael G.
Puschnig, Peter
Koller, Georg
Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110)
title Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110)
title_full Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110)
title_fullStr Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110)
title_full_unstemmed Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110)
title_short Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110)
title_sort going beyond pentacene: photoemission tomography of a heptacene monolayer on ag(110)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883341/
https://www.ncbi.nlm.nih.gov/pubmed/33603943
http://dx.doi.org/10.1021/acs.jpcc.0c09062
work_keys_str_mv AT sattelemaries goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT windischbacherandreas goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT eggerlarissa goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT haagsanja goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT hurdaxphilipp goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT kirschnerhans goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT gottwaldalexander goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT richtermathias goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT bocquetfrancoisc goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT soubatchserguei goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT tautzfstefan goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT bettingerholgerf goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT peisertheiko goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT chassethomas goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT ramseymichaelg goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT puschnigpeter goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110
AT kollergeorg goingbeyondpentacenephotoemissiontomographyofaheptacenemonolayeronag110