Cargando…
Comparison of the efficacy of different androgens measured by LC-MS/MS in representing hyperandrogenemia and an evaluation of adrenal-origin androgens with a dexamethasone suppression test in patients with PCOS
BACKGROUND: The aims of this study were to compare the efficacy of different androgens measured by liquid chromatography-mass spectrometry (LC-MS/MS) in representing hyperandrogenemia and to evaluate adrenal-origin androgens with a dexamethasone suppression test in patients with polycystic ovary syn...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883427/ https://www.ncbi.nlm.nih.gov/pubmed/33583431 http://dx.doi.org/10.1186/s13048-021-00781-5 |
Sumario: | BACKGROUND: The aims of this study were to compare the efficacy of different androgens measured by liquid chromatography-mass spectrometry (LC-MS/MS) in representing hyperandrogenemia and to evaluate adrenal-origin androgens with a dexamethasone suppression test in patients with polycystic ovary syndrome (PCOS). METHODS: One hundred and two patients with PCOS and 41 healthy volunteers were recruited and total serum testosterone (TT), androstenedione (AD), dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) were measured by LC-MS/MS. ROC analysis was performed to compare the efficacy of different androgens in representing hyperandrogenemia. Dexamethasone suppression test was performed in 51 patients with PCOS and above indicators were measured after dexamethasone administration. The prediction efficacy of DHEA and DHEA-S at baseline in the dexamethasone suppression test was evaluated with ROC analysis. RESULTS: The AUCs of TT, AD, free androgen index (FAI) and DHEA-S in ROC analysis for representing hyperandrogenemia were 0.816, 0.842, 0.937 and 0.678, respectively. The optimal cutoff value of TT was 0.337 ng/ml, with a sensitivity of 72.0% and specificity of 82.93%. The optimal cutoff value for AD was 1.309 ng/ml, with a sensitivity of 81.0% and specificity of 73.17%. The optimal cutoff value of the FAI was 2.50, with a sensitivity of 87.0% and specificity of 92.68%. Alternatively, AD or FAI more than the optimal cutoff values as evidence of hyperandrogenemia had the highest sensitivity of 91.18%. The levels of cortisol, DHEA and DHEA-S were all suppressed to narrow ranges after dexamethasone administration. Nine and 8 of 51 patients with PCOS had significant decreases in TT and AD, respectively. DHEA can be used as a indicator for predicting significant decrease of TT in dexamethasone suppression test with cutoff value of 13.28 ng/ml. A total of 27.5% (14/51) of patients had DHEA-S excess, but only 1 of 9 patients who had a significant decrease in TT had elevated level of DHEA-S at baseline. CONCLUSIONS: AD measured by LC-MS/MS can represent hyperandrogenemia in PCOS patients and, combined with TT or FAI, can improve the screening efficiency of hyperandrogenemia. Seventeen percent of PCOS patients had adrenal-origin androgen dominance, with TT significantly decreasing after 2 days of dexamethasone administration. Adrenal-origin androgen dominance was not parallel with DHEA-S excess in patients with PCOS. |
---|