Cargando…
Incomplete proline catabolism drives premature sperm aging
Infertility is an increasingly common health issue, with rising prevalence in advanced parental age. Environmental stress has established negative effects on reproductive health, however, the impact of altering cellular metabolism and its endogenous reactive oxygen species (ROS) on fertility remains...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884046/ https://www.ncbi.nlm.nih.gov/pubmed/33480139 http://dx.doi.org/10.1111/acel.13308 |
_version_ | 1783651332130865152 |
---|---|
author | Yen, Chia‐An Curran, Sean P. |
author_facet | Yen, Chia‐An Curran, Sean P. |
author_sort | Yen, Chia‐An |
collection | PubMed |
description | Infertility is an increasingly common health issue, with rising prevalence in advanced parental age. Environmental stress has established negative effects on reproductive health, however, the impact of altering cellular metabolism and its endogenous reactive oxygen species (ROS) on fertility remains unclear. Here, we demonstrate the loss of proline dehydrogenase, the first committed step in proline catabolism, is relatively benign. In contrast, disruption of alh‐6, which facilitates the second step of proline catabolism by converting 1‐pyrroline‐5‐carboxylate (P5C) to glutamate, results in premature reproductive senescence, specifically in males. The premature reproductive senescence in alh‐6 mutant males is caused by aberrant ROS homeostasis, which can be countered by genetically limiting the first committed step of proline catabolism that functions upstream of ALH‐6 or by pharmacological treatment with antioxidants. Taken together, our work uncovers proline metabolism as a critical component of normal sperm function that can alter the rate of aging in the male reproductive system. |
format | Online Article Text |
id | pubmed-7884046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78840462021-02-19 Incomplete proline catabolism drives premature sperm aging Yen, Chia‐An Curran, Sean P. Aging Cell Original Articles Infertility is an increasingly common health issue, with rising prevalence in advanced parental age. Environmental stress has established negative effects on reproductive health, however, the impact of altering cellular metabolism and its endogenous reactive oxygen species (ROS) on fertility remains unclear. Here, we demonstrate the loss of proline dehydrogenase, the first committed step in proline catabolism, is relatively benign. In contrast, disruption of alh‐6, which facilitates the second step of proline catabolism by converting 1‐pyrroline‐5‐carboxylate (P5C) to glutamate, results in premature reproductive senescence, specifically in males. The premature reproductive senescence in alh‐6 mutant males is caused by aberrant ROS homeostasis, which can be countered by genetically limiting the first committed step of proline catabolism that functions upstream of ALH‐6 or by pharmacological treatment with antioxidants. Taken together, our work uncovers proline metabolism as a critical component of normal sperm function that can alter the rate of aging in the male reproductive system. John Wiley and Sons Inc. 2021-01-21 2021-02 /pmc/articles/PMC7884046/ /pubmed/33480139 http://dx.doi.org/10.1111/acel.13308 Text en © 2021 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Yen, Chia‐An Curran, Sean P. Incomplete proline catabolism drives premature sperm aging |
title | Incomplete proline catabolism drives premature sperm aging |
title_full | Incomplete proline catabolism drives premature sperm aging |
title_fullStr | Incomplete proline catabolism drives premature sperm aging |
title_full_unstemmed | Incomplete proline catabolism drives premature sperm aging |
title_short | Incomplete proline catabolism drives premature sperm aging |
title_sort | incomplete proline catabolism drives premature sperm aging |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884046/ https://www.ncbi.nlm.nih.gov/pubmed/33480139 http://dx.doi.org/10.1111/acel.13308 |
work_keys_str_mv | AT yenchiaan incompleteprolinecatabolismdrivesprematurespermaging AT curranseanp incompleteprolinecatabolismdrivesprematurespermaging |