Cargando…
Widely Targeted Metabolomics Analysis Reveals Key Quality-Related Metabolites in Kernels of Sweet Corn
Sweet corn (Zea mays convar. saccharata var. rugosa) is a major economic vegetable crop. Different sweet corn cultivars vary largely in flavor, texture, and nutrition. The present study performed widely targeted metabolomics analysis based on the HPLC-MS/MS technology to analyze the metabolic profil...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884158/ https://www.ncbi.nlm.nih.gov/pubmed/33628768 http://dx.doi.org/10.1155/2021/2654546 |
Sumario: | Sweet corn (Zea mays convar. saccharata var. rugosa) is a major economic vegetable crop. Different sweet corn cultivars vary largely in flavor, texture, and nutrition. The present study performed widely targeted metabolomics analysis based on the HPLC-MS/MS technology to analyze the metabolic profiles in three sweet corn cultivars widely grown in China. A total of 568 metabolites in the three sweet corn cultivars were detected, of which 262 differential metabolites significantly changed among cultivars. Carbohydrates, organic acids, and amino acids were the majority detected primary metabolites. Organic acids were mainly concentrated on shikimate, benzoic acids, and quinic acid with aromatic groups. And the essential amino acids for the human body, methionine and threonine, were highly accumulated in the high-quality cultivar. In addition, phenylpropanoids and alkaloids were the most enriched secondary metabolites while terpenes were low-detected in sweet corn kernels. We found that the flavonoids exist in both free form and glycosylated form in sweet corn kernels. PCA and HCA revealed clear separations among the three sweet corn cultivars, suggesting distinctive metabolome profiles among three cultivars. The differential metabolites were mapped into flavonoid biosynthesis, phenylpropanoid biosynthesis, biosynthesis of amino acids, and other pathways according to the KEGG classification. Furthermore, we identified skimmin, N′,N(″)-diferuloylspermidine, and 3-hydroxyanthranilic acid as the key quality-related metabolites related to grain quality traits in sweet corn. The results suggested variations of metabolic composition among the three cultivars, providing the reference quality-related metabolites for sweet corn breeding. |
---|