Cargando…

Bacteriological and Physicochemical Quality of Drinking Water in Wegeda Town, Northwest Ethiopia

Waterborne diseases continue to challenge communities in low-income countries like Ethiopia. Clinical information in Wegeda town showed that the prevalence of waterborne diseases was 58%. This study aimed to evaluate bacteriological and physicochemical drinking water quality in Wegeda town. This stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Sitotaw, Baye, Melkie, Eshetie, Temesgen, Denekew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884162/
https://www.ncbi.nlm.nih.gov/pubmed/33628281
http://dx.doi.org/10.1155/2021/6646269
Descripción
Sumario:Waterborne diseases continue to challenge communities in low-income countries like Ethiopia. Clinical information in Wegeda town showed that the prevalence of waterborne diseases was 58%. This study aimed to evaluate bacteriological and physicochemical drinking water quality in Wegeda town. This study will add valuable scientific data for future intervention. Water samples from protected and unprotected springs, hand-dug well, taps, and households' containers were collected from November 2018 to June 2019 for bacteriological and physicochemical analyses. Besides, information about the potential risk factors was collected using a structured questionnaire. A total of 120 water samples were collected and analyzed for total and fecal coliform counts using the multiple tube fermentation method (MPN). The presence of Escherichia coli was also checked from fecal coliform positive samples collected from households' containers. Selected physicochemical parameters were also determined using the standard methods. In all cases, the median values of total and fecal coliform counts ranged from 5 to 27 and 2 to 13 MPN/100 ml, respectively. Accordingly, all of the drinking water samples did not comply with the standards. Coliforms were significantly higher in the households' containers than in the sources (p < 0.05) and also significantly varied by water sources. The highest and lowest coliform counts were recorded in unprotected spring and taps, respectively. Besides, 18.33% of water samples collected from households' containers were tested positive for E. coli. Regarding physicochemical parameters, most values were within the acceptable limit values recommended by the WHO. However, water samples from unprotected spring and hand-dug well did not satisfy the turbidity limit value set by the WHO. Drinking water systems in Wegeda town were likely contaminated with pathogenic bacteria likely due to poor protection and sanitation practices. Providing the community with potable water, toilets, domestic and animal waste disposal systems, and intensive health education and sanitation practices for the community are highly recommended.