Cargando…
Addressing Artificial Intelligence Bias in Retinal Diagnostics
PURPOSE: This study evaluated generative methods to potentially mitigate artificial intelligence (AI) bias when diagnosing diabetic retinopathy (DR) resulting from training data imbalance or domain generalization, which occurs when deep learning systems (DLSs) face concepts at test/inference time th...
Autores principales: | Burlina, Philippe, Joshi, Neil, Paul, William, Pacheco, Katia D., Bressler, Neil M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884292/ https://www.ncbi.nlm.nih.gov/pubmed/34003898 http://dx.doi.org/10.1167/tvst.10.2.13 |
Ejemplares similares
-
Considerations for addressing bias in artificial intelligence for health equity
por: Abràmoff, Michael D., et al.
Publicado: (2023) -
Human-Centered Design to Address Biases in Artificial Intelligence
por: Chen, You, et al.
Publicado: (2023) -
Addressing Fairness, Bias, and Appropriate Use of Artificial Intelligence and Machine Learning in Global Health
por: Fletcher, Richard Ribón, et al.
Publicado: (2021) -
An intelligence in our image: the risks of bias and errors in artificial intelligence
por: Osoba, Osonde A, et al.
Publicado: (2017) -
Artificial Intelligence and Machine Learning Technologies in Cancer Care: Addressing Disparities, Bias, and Data Diversity
por: Dankwa-Mullan, Irene, et al.
Publicado: (2022)