Cargando…
Learning dominant physical processes with data-driven balance models
Throughout the history of science, physics-based modeling has relied on judiciously approximating observed dynamics as a balance between a few dominant processes. However, this traditional approach is mathematically cumbersome and only applies in asymptotic regimes where there is a strict separation...
Autores principales: | Callaham, Jared L., Koch, James V., Brunton, Bingni W., Kutz, J. Nathan, Brunton, Steven L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884409/ https://www.ncbi.nlm.nih.gov/pubmed/33589607 http://dx.doi.org/10.1038/s41467-021-21331-z |
Ejemplares similares
-
Data-driven science and engineering: machine learning, dynamical systems, and control
por: Brunton, Steven L, et al.
Publicado: (2019) -
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
por: Brunton, Steven L., et al.
Publicado: (2016) -
Chaos as an intermittently forced linear system
por: Brunton, Steven L., et al.
Publicado: (2017) -
Data-driven discovery of coordinates and governing equations
por: Champion, Kathleen, et al.
Publicado: (2019) -
Structured time-delay models for dynamical systems with connections to Frenet–Serret frame
por: Hirsh, Seth M., et al.
Publicado: (2021)