Cargando…
Fast and precise single-cell data analysis using a hierarchical autoencoder
A primary challenge in single-cell RNA sequencing (scRNA-seq) studies comes from the massive amount of data and the excess noise level. To address this challenge, we introduce an analysis framework, named single-cell Decomposition using Hierarchical Autoencoder (scDHA), that reliably extracts repres...
Autores principales: | Tran, Duc, Nguyen, Hung, Tran, Bang, La Vecchia, Carlo, Luu, Hung N., Nguyen, Tin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884436/ https://www.ncbi.nlm.nih.gov/pubmed/33589635 http://dx.doi.org/10.1038/s41467-021-21312-2 |
Ejemplares similares
-
scCAN: single-cell clustering using autoencoder and network fusion
por: Tran, Bang, et al.
Publicado: (2022) -
A novel method for single-cell data imputation using subspace regression
por: Tran, Duc, et al.
Publicado: (2022) -
A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data
por: Nguyen, Hung, et al.
Publicado: (2020) -
SMRT: Randomized Data Transformation for Cancer Subtyping and Big Data Analysis
por: Nguyen, Hung, et al.
Publicado: (2021) -
A Novel Method for Cancer Subtyping and Risk Prediction Using Consensus Factor Analysis
por: Tran, Duc, et al.
Publicado: (2020)