Cargando…
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
Image-based teleconsultation using smartphones has become increasingly popular. In parallel, deep learning algorithms have been developed to detect radiological findings in chest X-rays (CXRs). However, the feasibility of using smartphones to automate this process has yet to be evaluated. This study...
Autores principales: | Kuo, Po-Chih, Tsai, Cheng Che, López, Diego M., Karargyris, Alexandros, Pollard, Tom J., Johnson, Alistair E. W., Celi, Leo Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884693/ https://www.ncbi.nlm.nih.gov/pubmed/33589700 http://dx.doi.org/10.1038/s41746-021-00393-9 |
Ejemplares similares
-
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents
por: Wu, Joy T., et al.
Publicado: (2020) -
Cardiovascular abnormalities in chest radiographs of children with pneumonia, Uganda
por: Nabawanuka, Eva, et al.
Publicado: (2023) -
MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports
por: Johnson, Alistair E. W., et al.
Publicado: (2019) -
Robust and Reproducible Quantification of the Extent of Chest Radiographic Abnormalities (And It’s Free!)
por: Requena-Méndez, Ana, et al.
Publicado: (2015) -
A patient with weakness and an abnormal chest radiograph: A case report
por: van Straaten, A, et al.
Publicado: (2018)