Cargando…

Eco friendly nanofluidic platforms using biodegradable nanoporous materials

Splendid advancement of micro/nanofluidic researches in the field of bio- and chemical-analysis enables various ubiquitous applications such as bio-medical diagnostics and environmental monitoring, etc. In such devices, nanostructures are the essential elements so that the nanofabrication methods ha...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Sungmin, Hong, Seongjun, Kim, Junsuk, Son, Seok Young, Lee, Hyomin, Kim, Sung Jae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884701/
https://www.ncbi.nlm.nih.gov/pubmed/33589696
http://dx.doi.org/10.1038/s41598-021-83306-w
Descripción
Sumario:Splendid advancement of micro/nanofluidic researches in the field of bio- and chemical-analysis enables various ubiquitous applications such as bio-medical diagnostics and environmental monitoring, etc. In such devices, nanostructures are the essential elements so that the nanofabrication methods have been major issues since the last couple of decades. However, most of nanofabrication methods are sophisticated and expensive due to the requirement of high-class cleanroom facilities, while low-cost and biocompatible materials have been already introduced in the microfluidic platforms. Thus, an off-the-shelf and biodegradable material for those nanostructures can complete the concept of an eco-friendly micro/nanofluidic platform. In this work, biodegradable materials originated from well-known organisms such as human nail plate and denatured hen egg (albumen and yolk) were rigorously investigated as a perm-selective nanoporous membrane. A simple micro/nanofluidic device integrated with such materials was fabricated to demonstrate nanofluidic phenomena. These distinctive evidences (the visualization of ion concentration polarization phenomenon, ohmic/limiting/over-limiting current behavior and surface charge-governed conductance) can fulfill the requirements of functional nanostructures for the nanofluidic applications. Therefore, while these materials were less robust than nano-lithographically fabricated structures, bio-oriented perm-selective materials would be utilized as a one of key elements of the biodegradable and eco friendly micro/nanofluidic applications.