Cargando…
Deep learning in cancer pathology: a new generation of clinical biomarkers
Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore, biomarkers often require tumour tissue on top of rou...
Autores principales: | Echle, Amelie, Rindtorff, Niklas Timon, Brinker, Titus Josef, Luedde, Tom, Pearson, Alexander Thomas, Kather, Jakob Nikolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884739/ https://www.ncbi.nlm.nih.gov/pubmed/33204028 http://dx.doi.org/10.1038/s41416-020-01122-x |
Ejemplares similares
-
Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study
por: Schmitt, Max, et al.
Publicado: (2021) -
Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning
por: Seraphin, Tobias Paul, et al.
Publicado: (2023) -
Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study
por: Niehues, Jan Moritz, et al.
Publicado: (2023) -
Predicting Mutational Status of Driver and Suppressor Genes Directly from Histopathology With Deep Learning: A Systematic Study Across 23 Solid Tumor Types
por: Loeffler, Chiara Maria Lavinia, et al.
Publicado: (2022) -
Uncertainty Estimation in Medical Image Classification: Systematic Review
por: Kurz, Alexander, et al.
Publicado: (2022)