Cargando…
Dimensionality reduction using singular vectors
A common problem in machine learning and pattern recognition is the process of identifying the most relevant features, specifically in dealing with high-dimensional datasets in bioinformatics. In this paper, we propose a new feature selection method, called Singular-Vectors Feature Selection (SVFS)....
Autores principales: | Afshar, Majid, Usefi, Hamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884742/ https://www.ncbi.nlm.nih.gov/pubmed/33589703 http://dx.doi.org/10.1038/s41598-021-83150-y |
Ejemplares similares
-
Vector fields on singular varieties
por: Brasselet, Jean-Paul, et al.
Publicado: (2009) -
Identifying Multi-Dimensional Co-Clusters in Tensors Based on Hyperplane Detection in Singular Vector Spaces
por: Zhao, Hongya, et al.
Publicado: (2016) -
Singularity and dynamics on discontinuous vector fields
por: Luo, Albert CJ, et al.
Publicado: (2006) -
Detecting ulcerative colitis from colon samples using efficient feature selection and machine learning
por: Khorasani, Hanieh Marvi, et al.
Publicado: (2020) -
Symposium on Singularities, Representation of Algebras, and Vector Bundles
por: Greuel, Gert-Martin, et al.
Publicado: (1987)