Cargando…
Probing the structure–function relationship with neural networks constructed by solving a system of linear equations
Neural network models are an invaluable tool to understand brain function since they allow us to connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge number of parameters, which must be chosen carefully such that networks reproduce anatomical, behavioural,...
Autores principales: | Mininni, Camilo J., Zanutto, B. Silvano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884791/ https://www.ncbi.nlm.nih.gov/pubmed/33589672 http://dx.doi.org/10.1038/s41598-021-82964-0 |
Ejemplares similares
-
Exploring the limits of learning: Segregation of information integration and response selection is required for learning a serial reversal task
por: Mininni, Camilo Juan, et al.
Publicado: (2017) -
Information capacity and robustness of encoding in the medial prefrontal cortex are modulated by the bioavailability of serotonin and the time elapsed from the cue during a reward-driven task
por: Pereyra, A. Ezequiel, et al.
Publicado: (2021) -
Wavelets based physics informed neural networks to solve non-linear differential equations
por: Uddin, Ziya, et al.
Publicado: (2023) -
Efficient enhancement of information in the prefrontal cortex during the presence of reward predicting stimuli
por: Mininni, Camilo J., et al.
Publicado: (2017) -
Putative dopamine neurons in the ventral tegmental area enhance information coding in the prefrontal cortex
por: Mininni, Camilo J., et al.
Publicado: (2018)