Cargando…

Using inverse finite element analysis to identify spinal tissue behaviour in situ

In computational modelling of musculoskeletal applications, one of the critical aspects is ensuring that a model can capture intrinsic population variability and not only representative of a “mean” individual. Developing and calibrating models with this aspect in mind is key for the credibility of a...

Descripción completa

Detalles Bibliográficos
Autor principal: Mengoni, Marlène
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884930/
https://www.ncbi.nlm.nih.gov/pubmed/32036039
http://dx.doi.org/10.1016/j.ymeth.2020.02.004
Descripción
Sumario:In computational modelling of musculoskeletal applications, one of the critical aspects is ensuring that a model can capture intrinsic population variability and not only representative of a “mean” individual. Developing and calibrating models with this aspect in mind is key for the credibility of a modelling methodology. This often requires calibration of complex models with respect to 3D experiments and measurements on a range of specimens or patients. Most Finite Element (FE) software’s do not have such a capacity embedded in their core tools. This paper presents a versatile interface between Finite Element (FE) software and optimisation tools, enabling calibration of a group of FE models on a range of experimental data. It is provided as a Python toolbox which has been fully tested and verified on Windows platforms. The toolbox is tested in three case studies involving in vitro testing of spinal tissues.