Cargando…
Precision and Sample Size Requirements for Regression-Based Norming Methods for Change Scores
To interpret a person’s change score, one typically transforms the change score into, for example, a percentile, so that one knows a person’s location in a distribution of change scores. Transformed scores are referred to as norms and the construction of norms is referred to as norming. Two often-us...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885019/ https://www.ncbi.nlm.nih.gov/pubmed/32336114 http://dx.doi.org/10.1177/1073191120913607 |
Sumario: | To interpret a person’s change score, one typically transforms the change score into, for example, a percentile, so that one knows a person’s location in a distribution of change scores. Transformed scores are referred to as norms and the construction of norms is referred to as norming. Two often-used norming methods for change scores are the regression-based change approach and the T Scores for Change method. In this article, we discuss the similarities and differences between these norming methods, and use a simulation study to systematically examine the precision of the two methods and to establish the minimum sample size requirements for satisfactory precision. |
---|