Cargando…
External Ventricular Drainage in Patients With Acute Aneurysmal Subarachnoid Hemorrhage After Microsurgical Clipping: Our 2006-2018 Experience and a Literature Review
Introduction The placement of an external ventricular drain (EVD) is widely practiced in neurosurgery for various diseases and conditions accompanied by impaired cerebrospinal fluid (CSF) circulation, intracranial hypertension (ICHyp), intraventricular hemorrhage (IVH), and hydrocephalus. Specialist...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885737/ https://www.ncbi.nlm.nih.gov/pubmed/33643744 http://dx.doi.org/10.7759/cureus.12951 |
Sumario: | Introduction The placement of an external ventricular drain (EVD) is widely practiced in neurosurgery for various diseases and conditions accompanied by impaired cerebrospinal fluid (CSF) circulation, intracranial hypertension (ICHyp), intraventricular hemorrhage (IVH), and hydrocephalus. Specialists have been using this method in patients with acute aneurysmal subarachnoid hemorrhage (aSAH) for more than 50 years. Extensive experience gained at the Burdenko Neurosurgical Center (BNC) in Moscow, the Russian Federation, in the surgical treatment of patients with acute aSAH enabled us to describe the results of using an EVD in patients after microsurgery. The objective of the research was to assess the effectiveness and safety of the EVD and clarify the indications for the microsurgical treatment of aneurysms in patients with acute SAH. Materials and methods From 2006 until the end of 2018, 645 patients registered in the BNC database underwent microsurgery for acute (0-21 days) aSAH. During the case study, we assessed the severity of hemorrhage according to the Fisher scale, the condition of patients on the Hunt-Hess (H-H) scale during surgery, the time of placement of EVD (before, during, and after surgery), and the duration of EVD. The number of patients with parenchymal intracranial pressure (ICP) transducers was assessed by the degree of correlation of ICP data through the EVD and parenchymal ICP transducer. One of the aims of the research was to compare the frequency of using EVD and decompressive craniectomy (DCH). The incidence of EVD-associated meningitis was analyzed. The need for a ventriculoperitoneal shunt (VPS) in patients after using EVD was also assessed. Overall outcomes were assessed using a modified Rankin scale (mRS) at the time of patient discharge. Exclusion criteria were as follows: patients aged less than 18 years and the lack of assessed data. Patients undergoing endovascular and conservative treatments also were excluded. Results Among the patients enrolled in the study, 22% (n=142) had EVD. Among these, 99 cases (69.7%) had EVD installed in the operating room just before the start of the surgical intervention. In some cases, ventriculostomy was performed on a delayed basis (16.3%). A satisfactory outcome (mRS scores of 1 and 2) was observed in 24.7% (n=35). Moderate and profound disability at the time of discharge was noted in 55.7% (n=79). Vegetative outcome at discharge was noted in 8.4% (n=12), and mortality occurred in 12.3% (n=15). Conclusion EVD ensures effective monitoring and reduction of ICP. EVD is associated with a relatively low risk of infectious, liquorodynamic, and hemorrhagic complications and does not worsen outcomes when used in patients with aSAH. We propose that all patients in the acute stage of SAH with H-H severity of III-V should receive EVD immediately before surgery. |
---|