Cargando…

Modulation of inflammatory processes by thermal stimulating and RPE regenerative laser therapies in age related macular degeneration mouse models

PURPOSE: Inflammatory processes play a major role within the multifactorial pathogenesis of age-related macular degeneration (AMD). Neuroretina sparing laser therapies, thermal stimulation of the retina (TSR) and selective retina therapy (SRT), are known to reduce AMD-like pathology in vitro and in...

Descripción completa

Detalles Bibliográficos
Autores principales: Richert, Elisabeth, von der Burchard, Claus, Klettner, Alexa, Arnold, Philipp, Lucius, Ralph, Brinkmann, Ralf, Roider, Johann, Tode, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885883/
https://www.ncbi.nlm.nih.gov/pubmed/33604557
http://dx.doi.org/10.1016/j.cytox.2020.100031
Descripción
Sumario:PURPOSE: Inflammatory processes play a major role within the multifactorial pathogenesis of age-related macular degeneration (AMD). Neuroretina sparing laser therapies, thermal stimulation of the retina (TSR) and selective retina therapy (SRT), are known to reduce AMD-like pathology in vitro and in vivo. We investigated the effect of TSR and SRT on inflammatory processes in AMD mouse models. METHODS: One randomized eye of 8 months old apolipoprotein (Apo)E and 9 months old nuclear factor (erythroid-derived 2) -like 2 (NRF2) knock out mice were treated by TSR (10 ms, 532 nm, 50 µm(2) spot size, mean 4.5 W, ~200 spots) or SRT (~1.4 µs pulses, 532 nm, 50 µm spot size, 100 Hz over 300 ms, mean 2.5 µJ per pulse, ~200 spots). Fellow eyes, untreated knock out mice and wild-type BL/6J mice acted as controls. All mice were examined funduscopically and by optical coherence tomography (OCT) at the day of laser treatment. Mice were euthanized and enucleated either 1 day or 7 days after laser treatment and examined by gene expression analysis of 84 inflammatory genes. RESULTS: The inflammatory gene expression profile of both knock out models compared to healthy BL/6J mice suggests a regulation of pro- and anti-inflammatory processes especially concerning T-cell activity and immune cell recruitment. TSR resulted in downregulation of several pro-inflammatory cell-mediators both in ApoE -/- and NRF2-/- mice compared to treatment naïve litter mates one day after treatment. In contrast, SRT induced pro-inflammatory cell-mediators connected with necrosis one day after treatment as expected following laser-induced selective RPE cell death. Seven days after laser treatment, both findings were reversed. CONCLUSIONS: Both TSR and SRT influence inflammatory processes in AMD mouse models. However, they act conversely. TSR leads to anti-inflammatory processes shortly after laser therapy and induces immune-cell recruitment one week after treatment. SRT leads to a quick inflammatory response to laser induced RPE necrotic processes. One week after SRT inflammation is inhibited. It remains unclear, if and to what extent this might play a role in a therapeutic or preventive approach of both laser modalities on AMD pathology.