Cargando…
SEED: Symptom Extraction from English Social Media Posts using Deep Learning and Transfer Learning
The increase of social media usage across the globe has fueled efforts in digital epidemiology for mining valuable information such as medication use, adverse drug effects and reports of viral infections that directly and indirectly affect population health. Such specific information can, however, b...
Autores principales: | Magge, Arjun, Weissenbacher, Davy, O’Connor, Karen, Scotch, Matthew, Gonzalez-Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885933/ https://www.ncbi.nlm.nih.gov/pubmed/33594374 http://dx.doi.org/10.1101/2021.02.09.21251454 |
Ejemplares similares
-
Deep neural networks and distant supervision for geographic location mention extraction
por: Magge, Arjun, et al.
Publicado: (2018) -
GeoBoost2: a natural languageprocessing pipeline for GenBank metadata enrichment for virus phylogeography
por: Magge, Arjun, et al.
Publicado: (2020) -
Bi-directional Recurrent Neural Network Models for Geographic Location Extraction in Biomedical Literature
por: Magge, Arjun, et al.
Publicado: (2019) -
Deep neural networks ensemble for detecting medication mentions in tweets
por: Weissenbacher, Davy, et al.
Publicado: (2019) -
Incorporating sampling uncertainty in the geospatial assignment of taxa for virus phylogeography
por: Scotch, Matthew, et al.
Publicado: (2019)