Cargando…
Estimating epidemiologic dynamics from cross-sectional viral load distributions
Estimating an epidemic’s trajectory is crucial for developing public health responses to infectious diseases, but incidence data used for such estimation are confounded by variable testing practices. We show instead that the population distribution of viral loads observed under random or symptom-bas...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885940/ https://www.ncbi.nlm.nih.gov/pubmed/33594381 http://dx.doi.org/10.1101/2020.10.08.20204222 |
_version_ | 1783651695974154240 |
---|---|
author | Hay, James A. Kennedy-Shaffer, Lee Kanjilal, Sanjat Lennon, Niall J. Gabriel, Stacey B. Lipsitch, Marc Mina, Michael J. |
author_facet | Hay, James A. Kennedy-Shaffer, Lee Kanjilal, Sanjat Lennon, Niall J. Gabriel, Stacey B. Lipsitch, Marc Mina, Michael J. |
author_sort | Hay, James A. |
collection | PubMed |
description | Estimating an epidemic’s trajectory is crucial for developing public health responses to infectious diseases, but incidence data used for such estimation are confounded by variable testing practices. We show instead that the population distribution of viral loads observed under random or symptom-based surveillance, in the form of cycle threshold (Ct) values, changes during an epidemic and that Ct values from even limited numbers of random samples can provide improved estimates of an epidemic’s trajectory. Combining multiple such samples and the fraction positive improves the precision and robustness of such estimation. We apply our methods to Ct values from surveillance conducted during the SARS-CoV-2 pandemic in a variety of settings and demonstrate new approaches for real-time estimates of epidemic trajectories for outbreak management and response. |
format | Online Article Text |
id | pubmed-7885940 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-78859402021-02-17 Estimating epidemiologic dynamics from cross-sectional viral load distributions Hay, James A. Kennedy-Shaffer, Lee Kanjilal, Sanjat Lennon, Niall J. Gabriel, Stacey B. Lipsitch, Marc Mina, Michael J. medRxiv Article Estimating an epidemic’s trajectory is crucial for developing public health responses to infectious diseases, but incidence data used for such estimation are confounded by variable testing practices. We show instead that the population distribution of viral loads observed under random or symptom-based surveillance, in the form of cycle threshold (Ct) values, changes during an epidemic and that Ct values from even limited numbers of random samples can provide improved estimates of an epidemic’s trajectory. Combining multiple such samples and the fraction positive improves the precision and robustness of such estimation. We apply our methods to Ct values from surveillance conducted during the SARS-CoV-2 pandemic in a variety of settings and demonstrate new approaches for real-time estimates of epidemic trajectories for outbreak management and response. Cold Spring Harbor Laboratory 2021-02-13 /pmc/articles/PMC7885940/ /pubmed/33594381 http://dx.doi.org/10.1101/2020.10.08.20204222 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Hay, James A. Kennedy-Shaffer, Lee Kanjilal, Sanjat Lennon, Niall J. Gabriel, Stacey B. Lipsitch, Marc Mina, Michael J. Estimating epidemiologic dynamics from cross-sectional viral load distributions |
title | Estimating epidemiologic dynamics from cross-sectional viral load distributions |
title_full | Estimating epidemiologic dynamics from cross-sectional viral load distributions |
title_fullStr | Estimating epidemiologic dynamics from cross-sectional viral load distributions |
title_full_unstemmed | Estimating epidemiologic dynamics from cross-sectional viral load distributions |
title_short | Estimating epidemiologic dynamics from cross-sectional viral load distributions |
title_sort | estimating epidemiologic dynamics from cross-sectional viral load distributions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885940/ https://www.ncbi.nlm.nih.gov/pubmed/33594381 http://dx.doi.org/10.1101/2020.10.08.20204222 |
work_keys_str_mv | AT hayjamesa estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions AT kennedyshafferlee estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions AT kanjilalsanjat estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions AT lennonniallj estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions AT gabrielstaceyb estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions AT lipsitchmarc estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions AT minamichaelj estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions |