Cargando…

Estimating epidemiologic dynamics from cross-sectional viral load distributions

Estimating an epidemic’s trajectory is crucial for developing public health responses to infectious diseases, but incidence data used for such estimation are confounded by variable testing practices. We show instead that the population distribution of viral loads observed under random or symptom-bas...

Descripción completa

Detalles Bibliográficos
Autores principales: Hay, James A., Kennedy-Shaffer, Lee, Kanjilal, Sanjat, Lennon, Niall J., Gabriel, Stacey B., Lipsitch, Marc, Mina, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885940/
https://www.ncbi.nlm.nih.gov/pubmed/33594381
http://dx.doi.org/10.1101/2020.10.08.20204222
_version_ 1783651695974154240
author Hay, James A.
Kennedy-Shaffer, Lee
Kanjilal, Sanjat
Lennon, Niall J.
Gabriel, Stacey B.
Lipsitch, Marc
Mina, Michael J.
author_facet Hay, James A.
Kennedy-Shaffer, Lee
Kanjilal, Sanjat
Lennon, Niall J.
Gabriel, Stacey B.
Lipsitch, Marc
Mina, Michael J.
author_sort Hay, James A.
collection PubMed
description Estimating an epidemic’s trajectory is crucial for developing public health responses to infectious diseases, but incidence data used for such estimation are confounded by variable testing practices. We show instead that the population distribution of viral loads observed under random or symptom-based surveillance, in the form of cycle threshold (Ct) values, changes during an epidemic and that Ct values from even limited numbers of random samples can provide improved estimates of an epidemic’s trajectory. Combining multiple such samples and the fraction positive improves the precision and robustness of such estimation. We apply our methods to Ct values from surveillance conducted during the SARS-CoV-2 pandemic in a variety of settings and demonstrate new approaches for real-time estimates of epidemic trajectories for outbreak management and response.
format Online
Article
Text
id pubmed-7885940
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-78859402021-02-17 Estimating epidemiologic dynamics from cross-sectional viral load distributions Hay, James A. Kennedy-Shaffer, Lee Kanjilal, Sanjat Lennon, Niall J. Gabriel, Stacey B. Lipsitch, Marc Mina, Michael J. medRxiv Article Estimating an epidemic’s trajectory is crucial for developing public health responses to infectious diseases, but incidence data used for such estimation are confounded by variable testing practices. We show instead that the population distribution of viral loads observed under random or symptom-based surveillance, in the form of cycle threshold (Ct) values, changes during an epidemic and that Ct values from even limited numbers of random samples can provide improved estimates of an epidemic’s trajectory. Combining multiple such samples and the fraction positive improves the precision and robustness of such estimation. We apply our methods to Ct values from surveillance conducted during the SARS-CoV-2 pandemic in a variety of settings and demonstrate new approaches for real-time estimates of epidemic trajectories for outbreak management and response. Cold Spring Harbor Laboratory 2021-02-13 /pmc/articles/PMC7885940/ /pubmed/33594381 http://dx.doi.org/10.1101/2020.10.08.20204222 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Hay, James A.
Kennedy-Shaffer, Lee
Kanjilal, Sanjat
Lennon, Niall J.
Gabriel, Stacey B.
Lipsitch, Marc
Mina, Michael J.
Estimating epidemiologic dynamics from cross-sectional viral load distributions
title Estimating epidemiologic dynamics from cross-sectional viral load distributions
title_full Estimating epidemiologic dynamics from cross-sectional viral load distributions
title_fullStr Estimating epidemiologic dynamics from cross-sectional viral load distributions
title_full_unstemmed Estimating epidemiologic dynamics from cross-sectional viral load distributions
title_short Estimating epidemiologic dynamics from cross-sectional viral load distributions
title_sort estimating epidemiologic dynamics from cross-sectional viral load distributions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885940/
https://www.ncbi.nlm.nih.gov/pubmed/33594381
http://dx.doi.org/10.1101/2020.10.08.20204222
work_keys_str_mv AT hayjamesa estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions
AT kennedyshafferlee estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions
AT kanjilalsanjat estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions
AT lennonniallj estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions
AT gabrielstaceyb estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions
AT lipsitchmarc estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions
AT minamichaelj estimatingepidemiologicdynamicsfromcrosssectionalviralloaddistributions