Cargando…
Segmentation of Coronary Calcified Plaque in Intravascular OCT Images Using a Two-Step Deep Learning Approach
We developed a fully automated, two-step deep learning approach for characterizing coronary calcified plaque in intravascular optical coherence tomography (IVOCT) images. First, major calcification lesions were detected from an entire pullback using a 3D convolutional neural network (CNN). Second, a...
Autores principales: | LEE, JUHWAN, GHARAIBEH, YAZAN, KOLLURU, CHAITANYA, ZIMIN, VLADISLAV N., DALLAN, LUIS AUGUSTO PALMA, KIM, JUSTIN NAMUK, BEZERRA, HIRAM G., WILSON, DAVID L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885992/ https://www.ncbi.nlm.nih.gov/pubmed/33598377 http://dx.doi.org/10.1109/access.2020.3045285 |
Ejemplares similares
-
Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring
por: Gharaibeh, Yazan, et al.
Publicado: (2019) -
Fully automated plaque characterization in intravascular OCT images using hybrid convolutional and lumen morphology features
por: Lee, Juhwan, et al.
Publicado: (2020) -
Learning With Fewer Images via Image Clustering: Application to Intravascular OCT Image Segmentation
por: KOLLURU, CHAITANYA, et al.
Publicado: (2021) -
Automated Segmentation of Microvessels in Intravascular OCT Images Using Deep Learning
por: Lee, Juhwan, et al.
Publicado: (2022) -
Prediction of stent under-expansion in calcified coronary arteries using machine learning on intravascular optical coherence tomography images
por: Gharaibeh, Yazan, et al.
Publicado: (2023)