Cargando…

PI Prob: A risk prediction and clinical guidance system for evaluating patients with recurrent infections

BACKGROUND: Primary immunodeficiency diseases represent an expanding set of heterogeneous conditions which are difficult to recognize clinically. Diagnostic rates outside of the newborn period have not changed appreciably. This concern underscores a need for novel methods of disease detection. OBJEC...

Descripción completa

Detalles Bibliográficos
Autores principales: Rider, Nicholas L., Cahill, Gina, Motazedi, Tina, Wei, Lei, Kurian, Ashok, Noroski, Lenora M., Seeborg, Filiz O., Chinn, Ivan K., Roberts, Kirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886140/
https://www.ncbi.nlm.nih.gov/pubmed/33591972
http://dx.doi.org/10.1371/journal.pone.0237285
_version_ 1783651736366350336
author Rider, Nicholas L.
Cahill, Gina
Motazedi, Tina
Wei, Lei
Kurian, Ashok
Noroski, Lenora M.
Seeborg, Filiz O.
Chinn, Ivan K.
Roberts, Kirk
author_facet Rider, Nicholas L.
Cahill, Gina
Motazedi, Tina
Wei, Lei
Kurian, Ashok
Noroski, Lenora M.
Seeborg, Filiz O.
Chinn, Ivan K.
Roberts, Kirk
author_sort Rider, Nicholas L.
collection PubMed
description BACKGROUND: Primary immunodeficiency diseases represent an expanding set of heterogeneous conditions which are difficult to recognize clinically. Diagnostic rates outside of the newborn period have not changed appreciably. This concern underscores a need for novel methods of disease detection. OBJECTIVE: We built a Bayesian network to provide real-time risk assessment about primary immunodeficiency and to facilitate prescriptive analytics for initiating the most appropriate diagnostic work up. Our goal is to improve diagnostic rates for primary immunodeficiency and shorten time to diagnosis. We aimed to use readily available health record data and a small training dataset to prove utility in diagnosing patients with relatively rare features. METHODS: We extracted data from the Texas Children’s Hospital electronic health record on a large population of primary immunodeficiency patients (n = 1762) and appropriately-matched set of controls (n = 1698). From the cohorts, clinically relevant prior probabilities were calculated enabling construction of a Bayesian network probabilistic model(PI Prob). Our model was constructed with clinical-immunology domain expertise, trained on a balanced cohort of 100 cases-controls and validated on an unseen balanced cohort of 150 cases-controls. Performance was measured by area under the receiver operator characteristic curve (AUROC). We also compared our network performance to classic machine learning model performance on the same dataset. RESULTS: PI Prob was accurate in classifying immunodeficiency patients from controls (AUROC = 0.945; p<0.0001) at a risk threshold of ≥6%. Additionally, the model was 89% accurate for categorizing validation cohort members into appropriate International Union of Immunological Societies diagnostic categories. Our network outperformed 3 other machine learning models and provides superior transparency with a prescriptive output element. CONCLUSION: Artificial intelligence methods can classify risk for primary immunodeficiency and guide management. PI Prob enables accurate, objective decision making about risk and guides the user towards the appropriate diagnostic evaluation for patients with recurrent infections. Probabilistic models can be trained with small datasets underscoring their utility for rare disease detection given appropriate domain expertise for feature selection and network construction.
format Online
Article
Text
id pubmed-7886140
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-78861402021-02-23 PI Prob: A risk prediction and clinical guidance system for evaluating patients with recurrent infections Rider, Nicholas L. Cahill, Gina Motazedi, Tina Wei, Lei Kurian, Ashok Noroski, Lenora M. Seeborg, Filiz O. Chinn, Ivan K. Roberts, Kirk PLoS One Research Article BACKGROUND: Primary immunodeficiency diseases represent an expanding set of heterogeneous conditions which are difficult to recognize clinically. Diagnostic rates outside of the newborn period have not changed appreciably. This concern underscores a need for novel methods of disease detection. OBJECTIVE: We built a Bayesian network to provide real-time risk assessment about primary immunodeficiency and to facilitate prescriptive analytics for initiating the most appropriate diagnostic work up. Our goal is to improve diagnostic rates for primary immunodeficiency and shorten time to diagnosis. We aimed to use readily available health record data and a small training dataset to prove utility in diagnosing patients with relatively rare features. METHODS: We extracted data from the Texas Children’s Hospital electronic health record on a large population of primary immunodeficiency patients (n = 1762) and appropriately-matched set of controls (n = 1698). From the cohorts, clinically relevant prior probabilities were calculated enabling construction of a Bayesian network probabilistic model(PI Prob). Our model was constructed with clinical-immunology domain expertise, trained on a balanced cohort of 100 cases-controls and validated on an unseen balanced cohort of 150 cases-controls. Performance was measured by area under the receiver operator characteristic curve (AUROC). We also compared our network performance to classic machine learning model performance on the same dataset. RESULTS: PI Prob was accurate in classifying immunodeficiency patients from controls (AUROC = 0.945; p<0.0001) at a risk threshold of ≥6%. Additionally, the model was 89% accurate for categorizing validation cohort members into appropriate International Union of Immunological Societies diagnostic categories. Our network outperformed 3 other machine learning models and provides superior transparency with a prescriptive output element. CONCLUSION: Artificial intelligence methods can classify risk for primary immunodeficiency and guide management. PI Prob enables accurate, objective decision making about risk and guides the user towards the appropriate diagnostic evaluation for patients with recurrent infections. Probabilistic models can be trained with small datasets underscoring their utility for rare disease detection given appropriate domain expertise for feature selection and network construction. Public Library of Science 2021-02-16 /pmc/articles/PMC7886140/ /pubmed/33591972 http://dx.doi.org/10.1371/journal.pone.0237285 Text en © 2021 Rider et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Rider, Nicholas L.
Cahill, Gina
Motazedi, Tina
Wei, Lei
Kurian, Ashok
Noroski, Lenora M.
Seeborg, Filiz O.
Chinn, Ivan K.
Roberts, Kirk
PI Prob: A risk prediction and clinical guidance system for evaluating patients with recurrent infections
title PI Prob: A risk prediction and clinical guidance system for evaluating patients with recurrent infections
title_full PI Prob: A risk prediction and clinical guidance system for evaluating patients with recurrent infections
title_fullStr PI Prob: A risk prediction and clinical guidance system for evaluating patients with recurrent infections
title_full_unstemmed PI Prob: A risk prediction and clinical guidance system for evaluating patients with recurrent infections
title_short PI Prob: A risk prediction and clinical guidance system for evaluating patients with recurrent infections
title_sort pi prob: a risk prediction and clinical guidance system for evaluating patients with recurrent infections
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886140/
https://www.ncbi.nlm.nih.gov/pubmed/33591972
http://dx.doi.org/10.1371/journal.pone.0237285
work_keys_str_mv AT ridernicholasl piprobariskpredictionandclinicalguidancesystemforevaluatingpatientswithrecurrentinfections
AT cahillgina piprobariskpredictionandclinicalguidancesystemforevaluatingpatientswithrecurrentinfections
AT motazeditina piprobariskpredictionandclinicalguidancesystemforevaluatingpatientswithrecurrentinfections
AT weilei piprobariskpredictionandclinicalguidancesystemforevaluatingpatientswithrecurrentinfections
AT kurianashok piprobariskpredictionandclinicalguidancesystemforevaluatingpatientswithrecurrentinfections
AT noroskilenoram piprobariskpredictionandclinicalguidancesystemforevaluatingpatientswithrecurrentinfections
AT seeborgfilizo piprobariskpredictionandclinicalguidancesystemforevaluatingpatientswithrecurrentinfections
AT chinnivank piprobariskpredictionandclinicalguidancesystemforevaluatingpatientswithrecurrentinfections
AT robertskirk piprobariskpredictionandclinicalguidancesystemforevaluatingpatientswithrecurrentinfections