Cargando…
β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis)
Maize with enhanced β-carotene production was engineered to counteract pervasive vitamin A deficiency in developing countries. Second-generation biofortified crops are being developed with additional traits that confer pest resistance. These include crops that can produce Bacillus thuringiensis Berl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886157/ https://www.ncbi.nlm.nih.gov/pubmed/33591990 http://dx.doi.org/10.1371/journal.pone.0246696 |
_version_ | 1783651740338356224 |
---|---|
author | Girón-Calva, Patricia Sarai Lopez, Carmen Albacete, Alfonso Albajes, Ramon Christou, Paul Eizaguirre, Matilde |
author_facet | Girón-Calva, Patricia Sarai Lopez, Carmen Albacete, Alfonso Albajes, Ramon Christou, Paul Eizaguirre, Matilde |
author_sort | Girón-Calva, Patricia Sarai |
collection | PubMed |
description | Maize with enhanced β-carotene production was engineered to counteract pervasive vitamin A deficiency in developing countries. Second-generation biofortified crops are being developed with additional traits that confer pest resistance. These include crops that can produce Bacillus thuringiensis Berliner (Bt) insecticidal proteins. Currently, it is unknown whether β-carotene can confer fitness benefits through to insect pests, specifically through altering Ostrinia nubilalis foraging behaviour or development in the presence of Bt insecticidal toxin. Therefore the effects of dietary β-carotene plus Bt insecticidal protein on feeding behaviour, mortality, and physiology in early and late instars of O. nubilalis larvae were investigated. The results of two-choice experiments showed that irrespective of β-carotene presence, at day five 68%-90% of neonates and 69%-77% of fifth-instar larvae avoided diets with Cry1A protein. Over 65% of neonate larvae preferred to feed on diets with β-carotene alone compared to 39% of fifth-instar larvae. Higher mortality (65%-97%) in neonates fed diets supplemented with β-carotene alone and in combination with Bt protein was found, whereas <36% mortality was observed when fed diets without supplemented β-carotene or Bt protein. Diets with both β-carotene and Bt protein extended 25 days the larval developmental duration from neonate to fifth instar (compared to Bt diets) but did not impair larval or pupal weight. Juvenile hormone and 20-hydroxyecdysone regulate insect development and their levels were at least 3-fold higher in larvae fed diets with β-carotene for 3 days. Overall, these results suggest that the effects of β-carotene and Bt protein on O. nubilalis is dependent on larval developmental stage. This study is one of the first that provides insight on how the interaction of novel traits may modulate crop susceptibility to insect pests. This understanding will in turn inform the development of crop protection strategies with greater efficacy. |
format | Online Article Text |
id | pubmed-7886157 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-78861572021-02-23 β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis) Girón-Calva, Patricia Sarai Lopez, Carmen Albacete, Alfonso Albajes, Ramon Christou, Paul Eizaguirre, Matilde PLoS One Research Article Maize with enhanced β-carotene production was engineered to counteract pervasive vitamin A deficiency in developing countries. Second-generation biofortified crops are being developed with additional traits that confer pest resistance. These include crops that can produce Bacillus thuringiensis Berliner (Bt) insecticidal proteins. Currently, it is unknown whether β-carotene can confer fitness benefits through to insect pests, specifically through altering Ostrinia nubilalis foraging behaviour or development in the presence of Bt insecticidal toxin. Therefore the effects of dietary β-carotene plus Bt insecticidal protein on feeding behaviour, mortality, and physiology in early and late instars of O. nubilalis larvae were investigated. The results of two-choice experiments showed that irrespective of β-carotene presence, at day five 68%-90% of neonates and 69%-77% of fifth-instar larvae avoided diets with Cry1A protein. Over 65% of neonate larvae preferred to feed on diets with β-carotene alone compared to 39% of fifth-instar larvae. Higher mortality (65%-97%) in neonates fed diets supplemented with β-carotene alone and in combination with Bt protein was found, whereas <36% mortality was observed when fed diets without supplemented β-carotene or Bt protein. Diets with both β-carotene and Bt protein extended 25 days the larval developmental duration from neonate to fifth instar (compared to Bt diets) but did not impair larval or pupal weight. Juvenile hormone and 20-hydroxyecdysone regulate insect development and their levels were at least 3-fold higher in larvae fed diets with β-carotene for 3 days. Overall, these results suggest that the effects of β-carotene and Bt protein on O. nubilalis is dependent on larval developmental stage. This study is one of the first that provides insight on how the interaction of novel traits may modulate crop susceptibility to insect pests. This understanding will in turn inform the development of crop protection strategies with greater efficacy. Public Library of Science 2021-02-16 /pmc/articles/PMC7886157/ /pubmed/33591990 http://dx.doi.org/10.1371/journal.pone.0246696 Text en © 2021 Girón-Calva et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Girón-Calva, Patricia Sarai Lopez, Carmen Albacete, Alfonso Albajes, Ramon Christou, Paul Eizaguirre, Matilde β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis) |
title | β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis) |
title_full | β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis) |
title_fullStr | β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis) |
title_full_unstemmed | β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis) |
title_short | β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis) |
title_sort | β-carotene and bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of european corn borer (ostrinia nubilalis) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886157/ https://www.ncbi.nlm.nih.gov/pubmed/33591990 http://dx.doi.org/10.1371/journal.pone.0246696 |
work_keys_str_mv | AT gironcalvapatriciasarai bcaroteneandbacillusthuringiensisinsecticidalproteindifferentiallymodulatefeedingbehaviourmortalityandphysiologyofeuropeancornborerostrinianubilalis AT lopezcarmen bcaroteneandbacillusthuringiensisinsecticidalproteindifferentiallymodulatefeedingbehaviourmortalityandphysiologyofeuropeancornborerostrinianubilalis AT albacetealfonso bcaroteneandbacillusthuringiensisinsecticidalproteindifferentiallymodulatefeedingbehaviourmortalityandphysiologyofeuropeancornborerostrinianubilalis AT albajesramon bcaroteneandbacillusthuringiensisinsecticidalproteindifferentiallymodulatefeedingbehaviourmortalityandphysiologyofeuropeancornborerostrinianubilalis AT christoupaul bcaroteneandbacillusthuringiensisinsecticidalproteindifferentiallymodulatefeedingbehaviourmortalityandphysiologyofeuropeancornborerostrinianubilalis AT eizaguirrematilde bcaroteneandbacillusthuringiensisinsecticidalproteindifferentiallymodulatefeedingbehaviourmortalityandphysiologyofeuropeancornborerostrinianubilalis |