Cargando…
An integrated clinical and genetic model for predicting risk of severe COVID-19: A population-based case–control study
Up to 30% of people who test positive to SARS-CoV-2 will develop severe COVID-19 and require hospitalisation. Age, gender, and comorbidities are known to be risk factors for severe COVID-19 but are generally considered independently without accurate knowledge of the magnitude of their effect on risk...
Autores principales: | Dite, Gillian S., Murphy, Nicholas M., Allman, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886160/ https://www.ncbi.nlm.nih.gov/pubmed/33592063 http://dx.doi.org/10.1371/journal.pone.0247205 |
Ejemplares similares
-
Development and validation of a clinical and genetic model for predicting risk of severe COVID-19
por: Dite, Gillian S., et al.
Publicado: (2021) -
Validation of a clinical and genetic model for predicting severe COVID-19
por: Dite, Gillian S., et al.
Publicado: (2022) -
A combined clinical and genetic model for predicting risk of ovarian cancer
por: Dite, Gillian S., et al.
Publicado: (2022) -
Melanoma risk prediction based on a polygenic risk score and clinical risk factors
por: Wong, Chi Kuen, et al.
Publicado: (2023) -
Validation of an Abridged Breast Cancer Risk Prediction Model for the General Population
por: Spaeth, Erika L., et al.
Publicado: (2023)