Cargando…
HDSI: High dimensional selection with interactions algorithm on feature selection and testing
Feature selection on high dimensional data along with the interaction effects is a critical challenge for classical statistical learning techniques. Existing feature selection algorithms such as random LASSO leverages LASSO capability to handle high dimensional data. However, the technique has two m...
Autores principales: | Jain, Rahi, Xu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886179/ https://www.ncbi.nlm.nih.gov/pubmed/33592034 http://dx.doi.org/10.1371/journal.pone.0246159 |
Ejemplares similares
-
Artificial Intelligence based wrapper for high dimensional feature selection
por: Jain, Rahi, et al.
Publicado: (2023) -
The Current State and Usage of European Electronic Cross-border Health Services (eHDSI)
por: Bruthans, Jan, et al.
Publicado: (2023) -
A greedy feature selection algorithm for Big Data of high dimensionality
por: Tsamardinos, Ioannis, et al.
Publicado: (2018) -
BOSO: A novel feature selection algorithm for linear regression with high-dimensional data
por: Valcárcel, Luis V., et al.
Publicado: (2022) -
Feature selection for high-dimensional temporal data
por: Tsagris, Michail, et al.
Publicado: (2018)