Cargando…
Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks
Recurrent spiking neural networks (RSNN) in the brain learn to perform a wide range of perceptual, cognitive and motor tasks very efficiently in terms of energy consumption and their training requires very few examples. This motivates the search for biologically inspired learning rules for RSNNs, ai...
Autores principales: | Muratore, Paolo, Capone, Cristiano, Paolucci, Pier Stanislao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886200/ https://www.ncbi.nlm.nih.gov/pubmed/33592040 http://dx.doi.org/10.1371/journal.pone.0247014 |
Ejemplares similares
-
Error-based or target-based? A unified framework for learning in recurrent spiking networks
por: Capone, Cristiano, et al.
Publicado: (2022) -
Temporal sequence learning via adaptation in biologically plausible spiking neural networks
por: Duarte, Renato, et al.
Publicado: (2014) -
Thalamo-cortical spiking model of incremental learning combining perception, context and NREM-sleep
por: Golosio, Bruno, et al.
Publicado: (2021) -
Spontaneous activity emerging from an inferred network model captures complex spatio-temporal dynamics of spike data
por: Capone, Cristiano, et al.
Publicado: (2018) -
Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model
por: Capone, Cristiano, et al.
Publicado: (2019)