Cargando…
Metabolic Syndrome Prediction Models Using Machine Learning and Sasang Constitution Type
BACKGROUND: Machine learning may be a useful tool for predicting metabolic syndrome (MetS), and previous studies also suggest that the risk of MetS differs according to Sasang constitution type. The present study investigated the development of MetS prediction models utilizing machine learning metho...
Autores principales: | Park, Ji-Eun, Mun, Sujeong, Lee, Siwoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886522/ https://www.ncbi.nlm.nih.gov/pubmed/33628316 http://dx.doi.org/10.1155/2021/8315047 |
Ejemplares similares
-
Machine learning-based prediction of Sasang constitution types using comprehensive clinical information and identification of key features for diagnosis
por: Park, Sa-Yoon, et al.
Publicado: (2021) -
The Sasang Constitution as an Independent Risk Factor for Metabolic Syndrome: Propensity Matching Analysis
por: Jang, Eunsu, et al.
Publicado: (2013) -
Predicting Sasang Constitution Using Body-Shape Information
por: Jang, Eunsu, et al.
Publicado: (2012) -
Constitutional multicenter bank linked to Sasang constitutional phenotypic data
por: Jin, Hee-Jeong, et al.
Publicado: (2015) -
The prevalence of general and abdominal obesity according to sasang constitution in Korea
por: Baek, Younghwa, et al.
Publicado: (2014)