Cargando…

Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts

OBJECTIVES: Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians. MATERIALS AND METHODS: Two independent rev...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Julian C, Fairchild, Andrew T, Tanksley, Jarred P, Palta, Manisha, Tenenbaum, Jessica D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886534/
https://www.ncbi.nlm.nih.gov/pubmed/33623888
http://dx.doi.org/10.1093/jamiaopen/ooaa064
Descripción
Sumario:OBJECTIVES: Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians. MATERIALS AND METHODS: Two independent reviewers identified present and negated National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits during radiation therapy with adjudication by a third reviewer. A NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System was developed and used to extract CTCAE terms. Accuracy was assessed by precision, recall, and F1. RESULTS: The NLP pipeline demonstrated high accuracy for common physician-abstracted symptoms, such as radiation dermatitis (F1 0.88), fatigue (0.85), and nausea (0.88). NLP had poor sensitivity for negated symptoms. CONCLUSION: NLP accurately detects a subset of documented present CTCAE symptoms, though is limited for negated symptoms. It may facilitate strategies to more consistently identify toxicities during cancer therapy.