Cargando…
Machine learning identifies girls with central precocious puberty based on multisource data
OBJECTIVE: The study aimed to develop simplified diagnostic models for identifying girls with central precocious puberty (CPP), without the expensive and cumbersome gonadotropin-releasing hormone (GnRH) stimulation test, which is the gold standard for CPP diagnosis. MATERIALS AND METHODS: Female pat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886559/ https://www.ncbi.nlm.nih.gov/pubmed/33623892 http://dx.doi.org/10.1093/jamiaopen/ooaa063 |
_version_ | 1783651821099679744 |
---|---|
author | Pan, Liyan Liu, Guangjian Mao, Xiaojian Liang, Huiying |
author_facet | Pan, Liyan Liu, Guangjian Mao, Xiaojian Liang, Huiying |
author_sort | Pan, Liyan |
collection | PubMed |
description | OBJECTIVE: The study aimed to develop simplified diagnostic models for identifying girls with central precocious puberty (CPP), without the expensive and cumbersome gonadotropin-releasing hormone (GnRH) stimulation test, which is the gold standard for CPP diagnosis. MATERIALS AND METHODS: Female patients who had secondary sexual characteristics before 8 years old and had taken a GnRH analog (GnRHa) stimulation test at a medical center in Guangzhou, China were enrolled. Data from clinical visiting, laboratory tests, and medical image examinations were collected. We first extracted features from unstructured data such as clinical reports and medical images. Then, models based on each single-source data or multisource data were developed with Extreme Gradient Boosting (XGBoost) classifier to classify patients as CPP or non-CPP. RESULTS: The best performance achieved an area under the curve (AUC) of 0.88 and Youden index of 0.64 in the model based on multisource data. The performance of single-source models based on data from basal laboratory tests and the feature importance of each variable showed that the basal hormone test had the highest diagnostic value for a CPP diagnosis. CONCLUSION: We developed three simplified models that use easily accessed clinical data before the GnRH stimulation test to identify girls who are at high risk of CPP. These models are tailored to the needs of patients in different clinical settings. Machine learning technologies and multisource data fusion can help to make a better diagnosis than traditional methods. |
format | Online Article Text |
id | pubmed-7886559 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-78865592021-02-22 Machine learning identifies girls with central precocious puberty based on multisource data Pan, Liyan Liu, Guangjian Mao, Xiaojian Liang, Huiying JAMIA Open Research and Applications OBJECTIVE: The study aimed to develop simplified diagnostic models for identifying girls with central precocious puberty (CPP), without the expensive and cumbersome gonadotropin-releasing hormone (GnRH) stimulation test, which is the gold standard for CPP diagnosis. MATERIALS AND METHODS: Female patients who had secondary sexual characteristics before 8 years old and had taken a GnRH analog (GnRHa) stimulation test at a medical center in Guangzhou, China were enrolled. Data from clinical visiting, laboratory tests, and medical image examinations were collected. We first extracted features from unstructured data such as clinical reports and medical images. Then, models based on each single-source data or multisource data were developed with Extreme Gradient Boosting (XGBoost) classifier to classify patients as CPP or non-CPP. RESULTS: The best performance achieved an area under the curve (AUC) of 0.88 and Youden index of 0.64 in the model based on multisource data. The performance of single-source models based on data from basal laboratory tests and the feature importance of each variable showed that the basal hormone test had the highest diagnostic value for a CPP diagnosis. CONCLUSION: We developed three simplified models that use easily accessed clinical data before the GnRH stimulation test to identify girls who are at high risk of CPP. These models are tailored to the needs of patients in different clinical settings. Machine learning technologies and multisource data fusion can help to make a better diagnosis than traditional methods. Oxford University Press 2020-12-05 /pmc/articles/PMC7886559/ /pubmed/33623892 http://dx.doi.org/10.1093/jamiaopen/ooaa063 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Research and Applications Pan, Liyan Liu, Guangjian Mao, Xiaojian Liang, Huiying Machine learning identifies girls with central precocious puberty based on multisource data |
title | Machine learning identifies girls with central precocious puberty based on multisource data |
title_full | Machine learning identifies girls with central precocious puberty based on multisource data |
title_fullStr | Machine learning identifies girls with central precocious puberty based on multisource data |
title_full_unstemmed | Machine learning identifies girls with central precocious puberty based on multisource data |
title_short | Machine learning identifies girls with central precocious puberty based on multisource data |
title_sort | machine learning identifies girls with central precocious puberty based on multisource data |
topic | Research and Applications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886559/ https://www.ncbi.nlm.nih.gov/pubmed/33623892 http://dx.doi.org/10.1093/jamiaopen/ooaa063 |
work_keys_str_mv | AT panliyan machinelearningidentifiesgirlswithcentralprecociouspubertybasedonmultisourcedata AT liuguangjian machinelearningidentifiesgirlswithcentralprecociouspubertybasedonmultisourcedata AT maoxiaojian machinelearningidentifiesgirlswithcentralprecociouspubertybasedonmultisourcedata AT lianghuiying machinelearningidentifiesgirlswithcentralprecociouspubertybasedonmultisourcedata |