Cargando…
Machine learning identifies girls with central precocious puberty based on multisource data
OBJECTIVE: The study aimed to develop simplified diagnostic models for identifying girls with central precocious puberty (CPP), without the expensive and cumbersome gonadotropin-releasing hormone (GnRH) stimulation test, which is the gold standard for CPP diagnosis. MATERIALS AND METHODS: Female pat...
Autores principales: | Pan, Liyan, Liu, Guangjian, Mao, Xiaojian, Liang, Huiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886559/ https://www.ncbi.nlm.nih.gov/pubmed/33623892 http://dx.doi.org/10.1093/jamiaopen/ooaa063 |
Ejemplares similares
-
Development of Prediction Models Using Machine Learning Algorithms for Girls with Suspected Central Precocious Puberty: Retrospective Study
por: Pan, Liyan, et al.
Publicado: (2019) -
Precocious puberty in girls
por: Chittwar, Sachin, et al.
Publicado: (2012) -
Outcome of girls with central precocious puberty (CPP)
por: Shah, Ruchi, et al.
Publicado: (2015) -
Thyroid function in girls with central precocious puberty
por: Jung, Geehae, et al.
Publicado: (2019) -
Development and Validation of Clinical Diagnostic Model for Girls with Central Precocious Puberty: Machine-learning Approaches
por: Huynh, Quynh Thi Vu, et al.
Publicado: (2022)