Cargando…
Modeling physician variability to prioritize relevant medical record information
OBJECTIVE: Patient information can be retrieved more efficiently in electronic medical record (EMR) systems by using machine learning models that predict which information a physician will seek in a clinical context. However, information-seeking behavior varies across EMR users. To explicitly accoun...
Autores principales: | Tajgardoon, Mohammadamin, Cooper, Gregory F, King, Andrew J, Clermont, Gilles, Hochheiser, Harry, Hauskrecht, Milos, Sittig, Dean F, Visweswaran, Shyam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886572/ https://www.ncbi.nlm.nih.gov/pubmed/33623894 http://dx.doi.org/10.1093/jamiaopen/ooaa058 |
Ejemplares similares
-
Leveraging Eye Tracking to Prioritize Relevant Medical Record Data: Comparative Machine Learning Study
por: King, Andrew J, et al.
Publicado: (2020) -
A simple electronic medical record system designed for research
por: King, Andrew J, et al.
Publicado: (2021) -
Evaluation of eye tracking for a decision support application
por: Visweswaran, Shyam, et al.
Publicado: (2021) -
Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR
por: King, Andrew J., et al.
Publicado: (2017) -
Understanding differences in electronic health record (EHR) use: linking individual physicians’ perceptions of uncertainty and EHR use patterns in ambulatory care
por: Lanham, Holly Jordan, et al.
Publicado: (2014)