Cargando…
Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study
BACKGROUND: An increasing number of studies within digital pathology show the potential of artificial intelligence (AI) to diagnose cancer using histological whole slide images, which requires large and diverse data sets. While diversification may result in more generalizable AI-based systems, it ca...
Autores principales: | Schmitt, Max, Maron, Roman Christoph, Hekler, Achim, Stenzinger, Albrecht, Hauschild, Axel, Weichenthal, Michael, Tiemann, Markus, Krahl, Dieter, Kutzner, Heinz, Utikal, Jochen Sven, Haferkamp, Sebastian, Kather, Jakob Nikolas, Klauschen, Frederick, Krieghoff-Henning, Eva, Fröhling, Stefan, von Kalle, Christof, Brinker, Titus Josef |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886613/ https://www.ncbi.nlm.nih.gov/pubmed/33528370 http://dx.doi.org/10.2196/23436 |
Ejemplares similares
-
Uncertainty Estimation in Medical Image Classification: Systematic Review
por: Kurz, Alexander, et al.
Publicado: (2022) -
Artificial Intelligence and Its Effect on Dermatologists’ Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study
por: Maron, Roman C, et al.
Publicado: (2020) -
Reducing the Impact of Confounding Factors on Skin Cancer Classification via Image Segmentation: Technical Model Study
por: Maron, Roman C, et al.
Publicado: (2021) -
Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective
por: Jutzi, Tanja B., et al.
Publicado: (2020) -
Integrating Patient Data Into Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
por: Höhn, Julia, et al.
Publicado: (2021)