Cargando…
Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass
Long-term climate change and periodic environmental extremes threaten food and fuel security(1) and global crop productivity(2–4). Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience(5), these approaches require sufficient knowled...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886653/ https://www.ncbi.nlm.nih.gov/pubmed/33505029 http://dx.doi.org/10.1038/s41586-020-03127-1 |
_version_ | 1783651841358168064 |
---|---|
author | Lovell, John T. MacQueen, Alice H. Mamidi, Sujan Bonnette, Jason Jenkins, Jerry Napier, Joseph D. Sreedasyam, Avinash Healey, Adam Session, Adam Shu, Shengqiang Barry, Kerrie Bonos, Stacy Boston, LoriBeth Daum, Christopher Deshpande, Shweta Ewing, Aren Grabowski, Paul P. Haque, Taslima Harrison, Melanie Jiang, Jiming Kudrna, Dave Lipzen, Anna Pendergast, Thomas H. Plott, Chris Qi, Peng Saski, Christopher A. Shakirov, Eugene V. Sims, David Sharma, Manoj Sharma, Rita Stewart, Ada Singan, Vasanth R. Tang, Yuhong Thibivillier, Sandra Webber, Jenell Weng, Xiaoyu Williams, Melissa Wu, Guohong Albert Yoshinaga, Yuko Zane, Matthew Zhang, Li Zhang, Jiyi Behrman, Kathrine D. Boe, Arvid R. Fay, Philip A. Fritschi, Felix B. Jastrow, Julie D. Lloyd-Reilley, John Martínez-Reyna, Juan Manuel Matamala, Roser Mitchell, Robert B. Rouquette, Francis M. Ronald, Pamela Saha, Malay Tobias, Christian M. Udvardi, Michael Wing, Rod A. Wu, Yanqi Bartley, Laura E. Casler, Michael Devos, Katrien M. Lowry, David B. Rokhsar, Daniel S. Grimwood, Jane Juenger, Thomas E. Schmutz, Jeremy |
author_facet | Lovell, John T. MacQueen, Alice H. Mamidi, Sujan Bonnette, Jason Jenkins, Jerry Napier, Joseph D. Sreedasyam, Avinash Healey, Adam Session, Adam Shu, Shengqiang Barry, Kerrie Bonos, Stacy Boston, LoriBeth Daum, Christopher Deshpande, Shweta Ewing, Aren Grabowski, Paul P. Haque, Taslima Harrison, Melanie Jiang, Jiming Kudrna, Dave Lipzen, Anna Pendergast, Thomas H. Plott, Chris Qi, Peng Saski, Christopher A. Shakirov, Eugene V. Sims, David Sharma, Manoj Sharma, Rita Stewart, Ada Singan, Vasanth R. Tang, Yuhong Thibivillier, Sandra Webber, Jenell Weng, Xiaoyu Williams, Melissa Wu, Guohong Albert Yoshinaga, Yuko Zane, Matthew Zhang, Li Zhang, Jiyi Behrman, Kathrine D. Boe, Arvid R. Fay, Philip A. Fritschi, Felix B. Jastrow, Julie D. Lloyd-Reilley, John Martínez-Reyna, Juan Manuel Matamala, Roser Mitchell, Robert B. Rouquette, Francis M. Ronald, Pamela Saha, Malay Tobias, Christian M. Udvardi, Michael Wing, Rod A. Wu, Yanqi Bartley, Laura E. Casler, Michael Devos, Katrien M. Lowry, David B. Rokhsar, Daniel S. Grimwood, Jane Juenger, Thomas E. Schmutz, Jeremy |
author_sort | Lovell, John T. |
collection | PubMed |
description | Long-term climate change and periodic environmental extremes threaten food and fuel security(1) and global crop productivity(2–4). Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience(5), these approaches require sufficient knowledge of the genes that underlie productivity and adaptation(6)—knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate–gene–biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene–trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy. |
format | Online Article Text |
id | pubmed-7886653 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78866532021-03-03 Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass Lovell, John T. MacQueen, Alice H. Mamidi, Sujan Bonnette, Jason Jenkins, Jerry Napier, Joseph D. Sreedasyam, Avinash Healey, Adam Session, Adam Shu, Shengqiang Barry, Kerrie Bonos, Stacy Boston, LoriBeth Daum, Christopher Deshpande, Shweta Ewing, Aren Grabowski, Paul P. Haque, Taslima Harrison, Melanie Jiang, Jiming Kudrna, Dave Lipzen, Anna Pendergast, Thomas H. Plott, Chris Qi, Peng Saski, Christopher A. Shakirov, Eugene V. Sims, David Sharma, Manoj Sharma, Rita Stewart, Ada Singan, Vasanth R. Tang, Yuhong Thibivillier, Sandra Webber, Jenell Weng, Xiaoyu Williams, Melissa Wu, Guohong Albert Yoshinaga, Yuko Zane, Matthew Zhang, Li Zhang, Jiyi Behrman, Kathrine D. Boe, Arvid R. Fay, Philip A. Fritschi, Felix B. Jastrow, Julie D. Lloyd-Reilley, John Martínez-Reyna, Juan Manuel Matamala, Roser Mitchell, Robert B. Rouquette, Francis M. Ronald, Pamela Saha, Malay Tobias, Christian M. Udvardi, Michael Wing, Rod A. Wu, Yanqi Bartley, Laura E. Casler, Michael Devos, Katrien M. Lowry, David B. Rokhsar, Daniel S. Grimwood, Jane Juenger, Thomas E. Schmutz, Jeremy Nature Article Long-term climate change and periodic environmental extremes threaten food and fuel security(1) and global crop productivity(2–4). Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience(5), these approaches require sufficient knowledge of the genes that underlie productivity and adaptation(6)—knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate–gene–biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene–trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy. Nature Publishing Group UK 2021-01-27 2021 /pmc/articles/PMC7886653/ /pubmed/33505029 http://dx.doi.org/10.1038/s41586-020-03127-1 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lovell, John T. MacQueen, Alice H. Mamidi, Sujan Bonnette, Jason Jenkins, Jerry Napier, Joseph D. Sreedasyam, Avinash Healey, Adam Session, Adam Shu, Shengqiang Barry, Kerrie Bonos, Stacy Boston, LoriBeth Daum, Christopher Deshpande, Shweta Ewing, Aren Grabowski, Paul P. Haque, Taslima Harrison, Melanie Jiang, Jiming Kudrna, Dave Lipzen, Anna Pendergast, Thomas H. Plott, Chris Qi, Peng Saski, Christopher A. Shakirov, Eugene V. Sims, David Sharma, Manoj Sharma, Rita Stewart, Ada Singan, Vasanth R. Tang, Yuhong Thibivillier, Sandra Webber, Jenell Weng, Xiaoyu Williams, Melissa Wu, Guohong Albert Yoshinaga, Yuko Zane, Matthew Zhang, Li Zhang, Jiyi Behrman, Kathrine D. Boe, Arvid R. Fay, Philip A. Fritschi, Felix B. Jastrow, Julie D. Lloyd-Reilley, John Martínez-Reyna, Juan Manuel Matamala, Roser Mitchell, Robert B. Rouquette, Francis M. Ronald, Pamela Saha, Malay Tobias, Christian M. Udvardi, Michael Wing, Rod A. Wu, Yanqi Bartley, Laura E. Casler, Michael Devos, Katrien M. Lowry, David B. Rokhsar, Daniel S. Grimwood, Jane Juenger, Thomas E. Schmutz, Jeremy Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass |
title | Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass |
title_full | Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass |
title_fullStr | Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass |
title_full_unstemmed | Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass |
title_short | Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass |
title_sort | genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886653/ https://www.ncbi.nlm.nih.gov/pubmed/33505029 http://dx.doi.org/10.1038/s41586-020-03127-1 |
work_keys_str_mv | AT lovelljohnt genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT macqueenaliceh genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT mamidisujan genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT bonnettejason genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT jenkinsjerry genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT napierjosephd genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT sreedasyamavinash genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT healeyadam genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT sessionadam genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT shushengqiang genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT barrykerrie genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT bonosstacy genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT bostonloribeth genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT daumchristopher genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT deshpandeshweta genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT ewingaren genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT grabowskipaulp genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT haquetaslima genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT harrisonmelanie genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT jiangjiming genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT kudrnadave genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT lipzenanna genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT pendergastthomash genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT plottchris genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT qipeng genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT saskichristophera genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT shakiroveugenev genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT simsdavid genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT sharmamanoj genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT sharmarita genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT stewartada genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT singanvasanthr genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT tangyuhong genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT thibivilliersandra genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT webberjenell genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT wengxiaoyu genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT williamsmelissa genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT wuguohongalbert genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT yoshinagayuko genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT zanematthew genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT zhangli genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT zhangjiyi genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT behrmankathrined genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT boearvidr genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT fayphilipa genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT fritschifelixb genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT jastrowjulied genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT lloydreilleyjohn genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT martinezreynajuanmanuel genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT matamalaroser genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT mitchellrobertb genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT rouquettefrancism genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT ronaldpamela genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT sahamalay genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT tobiaschristianm genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT udvardimichael genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT wingroda genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT wuyanqi genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT bartleylaurae genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT caslermichael genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT devoskatrienm genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT lowrydavidb genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT rokhsardaniels genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT grimwoodjane genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT juengerthomase genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass AT schmutzjeremy genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass |