Cargando…

Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass

Long-term climate change and periodic environmental extremes threaten food and fuel security(1) and global crop productivity(2–4). Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience(5), these approaches require sufficient knowled...

Descripción completa

Detalles Bibliográficos
Autores principales: Lovell, John T., MacQueen, Alice H., Mamidi, Sujan, Bonnette, Jason, Jenkins, Jerry, Napier, Joseph D., Sreedasyam, Avinash, Healey, Adam, Session, Adam, Shu, Shengqiang, Barry, Kerrie, Bonos, Stacy, Boston, LoriBeth, Daum, Christopher, Deshpande, Shweta, Ewing, Aren, Grabowski, Paul P., Haque, Taslima, Harrison, Melanie, Jiang, Jiming, Kudrna, Dave, Lipzen, Anna, Pendergast, Thomas H., Plott, Chris, Qi, Peng, Saski, Christopher A., Shakirov, Eugene V., Sims, David, Sharma, Manoj, Sharma, Rita, Stewart, Ada, Singan, Vasanth R., Tang, Yuhong, Thibivillier, Sandra, Webber, Jenell, Weng, Xiaoyu, Williams, Melissa, Wu, Guohong Albert, Yoshinaga, Yuko, Zane, Matthew, Zhang, Li, Zhang, Jiyi, Behrman, Kathrine D., Boe, Arvid R., Fay, Philip A., Fritschi, Felix B., Jastrow, Julie D., Lloyd-Reilley, John, Martínez-Reyna, Juan Manuel, Matamala, Roser, Mitchell, Robert B., Rouquette, Francis M., Ronald, Pamela, Saha, Malay, Tobias, Christian M., Udvardi, Michael, Wing, Rod A., Wu, Yanqi, Bartley, Laura E., Casler, Michael, Devos, Katrien M., Lowry, David B., Rokhsar, Daniel S., Grimwood, Jane, Juenger, Thomas E., Schmutz, Jeremy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886653/
https://www.ncbi.nlm.nih.gov/pubmed/33505029
http://dx.doi.org/10.1038/s41586-020-03127-1
_version_ 1783651841358168064
author Lovell, John T.
MacQueen, Alice H.
Mamidi, Sujan
Bonnette, Jason
Jenkins, Jerry
Napier, Joseph D.
Sreedasyam, Avinash
Healey, Adam
Session, Adam
Shu, Shengqiang
Barry, Kerrie
Bonos, Stacy
Boston, LoriBeth
Daum, Christopher
Deshpande, Shweta
Ewing, Aren
Grabowski, Paul P.
Haque, Taslima
Harrison, Melanie
Jiang, Jiming
Kudrna, Dave
Lipzen, Anna
Pendergast, Thomas H.
Plott, Chris
Qi, Peng
Saski, Christopher A.
Shakirov, Eugene V.
Sims, David
Sharma, Manoj
Sharma, Rita
Stewart, Ada
Singan, Vasanth R.
Tang, Yuhong
Thibivillier, Sandra
Webber, Jenell
Weng, Xiaoyu
Williams, Melissa
Wu, Guohong Albert
Yoshinaga, Yuko
Zane, Matthew
Zhang, Li
Zhang, Jiyi
Behrman, Kathrine D.
Boe, Arvid R.
Fay, Philip A.
Fritschi, Felix B.
Jastrow, Julie D.
Lloyd-Reilley, John
Martínez-Reyna, Juan Manuel
Matamala, Roser
Mitchell, Robert B.
Rouquette, Francis M.
Ronald, Pamela
Saha, Malay
Tobias, Christian M.
Udvardi, Michael
Wing, Rod A.
Wu, Yanqi
Bartley, Laura E.
Casler, Michael
Devos, Katrien M.
Lowry, David B.
Rokhsar, Daniel S.
Grimwood, Jane
Juenger, Thomas E.
Schmutz, Jeremy
author_facet Lovell, John T.
MacQueen, Alice H.
Mamidi, Sujan
Bonnette, Jason
Jenkins, Jerry
Napier, Joseph D.
Sreedasyam, Avinash
Healey, Adam
Session, Adam
Shu, Shengqiang
Barry, Kerrie
Bonos, Stacy
Boston, LoriBeth
Daum, Christopher
Deshpande, Shweta
Ewing, Aren
Grabowski, Paul P.
Haque, Taslima
Harrison, Melanie
Jiang, Jiming
Kudrna, Dave
Lipzen, Anna
Pendergast, Thomas H.
Plott, Chris
Qi, Peng
Saski, Christopher A.
Shakirov, Eugene V.
Sims, David
Sharma, Manoj
Sharma, Rita
Stewart, Ada
Singan, Vasanth R.
Tang, Yuhong
Thibivillier, Sandra
Webber, Jenell
Weng, Xiaoyu
Williams, Melissa
Wu, Guohong Albert
Yoshinaga, Yuko
Zane, Matthew
Zhang, Li
Zhang, Jiyi
Behrman, Kathrine D.
Boe, Arvid R.
Fay, Philip A.
Fritschi, Felix B.
Jastrow, Julie D.
Lloyd-Reilley, John
Martínez-Reyna, Juan Manuel
Matamala, Roser
Mitchell, Robert B.
Rouquette, Francis M.
Ronald, Pamela
Saha, Malay
Tobias, Christian M.
Udvardi, Michael
Wing, Rod A.
Wu, Yanqi
Bartley, Laura E.
Casler, Michael
Devos, Katrien M.
Lowry, David B.
Rokhsar, Daniel S.
Grimwood, Jane
Juenger, Thomas E.
Schmutz, Jeremy
author_sort Lovell, John T.
collection PubMed
description Long-term climate change and periodic environmental extremes threaten food and fuel security(1) and global crop productivity(2–4). Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience(5), these approaches require sufficient knowledge of the genes that underlie productivity and adaptation(6)—knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate–gene–biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene–trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.
format Online
Article
Text
id pubmed-7886653
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78866532021-03-03 Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass Lovell, John T. MacQueen, Alice H. Mamidi, Sujan Bonnette, Jason Jenkins, Jerry Napier, Joseph D. Sreedasyam, Avinash Healey, Adam Session, Adam Shu, Shengqiang Barry, Kerrie Bonos, Stacy Boston, LoriBeth Daum, Christopher Deshpande, Shweta Ewing, Aren Grabowski, Paul P. Haque, Taslima Harrison, Melanie Jiang, Jiming Kudrna, Dave Lipzen, Anna Pendergast, Thomas H. Plott, Chris Qi, Peng Saski, Christopher A. Shakirov, Eugene V. Sims, David Sharma, Manoj Sharma, Rita Stewart, Ada Singan, Vasanth R. Tang, Yuhong Thibivillier, Sandra Webber, Jenell Weng, Xiaoyu Williams, Melissa Wu, Guohong Albert Yoshinaga, Yuko Zane, Matthew Zhang, Li Zhang, Jiyi Behrman, Kathrine D. Boe, Arvid R. Fay, Philip A. Fritschi, Felix B. Jastrow, Julie D. Lloyd-Reilley, John Martínez-Reyna, Juan Manuel Matamala, Roser Mitchell, Robert B. Rouquette, Francis M. Ronald, Pamela Saha, Malay Tobias, Christian M. Udvardi, Michael Wing, Rod A. Wu, Yanqi Bartley, Laura E. Casler, Michael Devos, Katrien M. Lowry, David B. Rokhsar, Daniel S. Grimwood, Jane Juenger, Thomas E. Schmutz, Jeremy Nature Article Long-term climate change and periodic environmental extremes threaten food and fuel security(1) and global crop productivity(2–4). Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience(5), these approaches require sufficient knowledge of the genes that underlie productivity and adaptation(6)—knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate–gene–biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene–trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy. Nature Publishing Group UK 2021-01-27 2021 /pmc/articles/PMC7886653/ /pubmed/33505029 http://dx.doi.org/10.1038/s41586-020-03127-1 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Lovell, John T.
MacQueen, Alice H.
Mamidi, Sujan
Bonnette, Jason
Jenkins, Jerry
Napier, Joseph D.
Sreedasyam, Avinash
Healey, Adam
Session, Adam
Shu, Shengqiang
Barry, Kerrie
Bonos, Stacy
Boston, LoriBeth
Daum, Christopher
Deshpande, Shweta
Ewing, Aren
Grabowski, Paul P.
Haque, Taslima
Harrison, Melanie
Jiang, Jiming
Kudrna, Dave
Lipzen, Anna
Pendergast, Thomas H.
Plott, Chris
Qi, Peng
Saski, Christopher A.
Shakirov, Eugene V.
Sims, David
Sharma, Manoj
Sharma, Rita
Stewart, Ada
Singan, Vasanth R.
Tang, Yuhong
Thibivillier, Sandra
Webber, Jenell
Weng, Xiaoyu
Williams, Melissa
Wu, Guohong Albert
Yoshinaga, Yuko
Zane, Matthew
Zhang, Li
Zhang, Jiyi
Behrman, Kathrine D.
Boe, Arvid R.
Fay, Philip A.
Fritschi, Felix B.
Jastrow, Julie D.
Lloyd-Reilley, John
Martínez-Reyna, Juan Manuel
Matamala, Roser
Mitchell, Robert B.
Rouquette, Francis M.
Ronald, Pamela
Saha, Malay
Tobias, Christian M.
Udvardi, Michael
Wing, Rod A.
Wu, Yanqi
Bartley, Laura E.
Casler, Michael
Devos, Katrien M.
Lowry, David B.
Rokhsar, Daniel S.
Grimwood, Jane
Juenger, Thomas E.
Schmutz, Jeremy
Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass
title Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass
title_full Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass
title_fullStr Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass
title_full_unstemmed Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass
title_short Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass
title_sort genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886653/
https://www.ncbi.nlm.nih.gov/pubmed/33505029
http://dx.doi.org/10.1038/s41586-020-03127-1
work_keys_str_mv AT lovelljohnt genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT macqueenaliceh genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT mamidisujan genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT bonnettejason genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT jenkinsjerry genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT napierjosephd genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT sreedasyamavinash genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT healeyadam genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT sessionadam genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT shushengqiang genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT barrykerrie genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT bonosstacy genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT bostonloribeth genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT daumchristopher genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT deshpandeshweta genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT ewingaren genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT grabowskipaulp genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT haquetaslima genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT harrisonmelanie genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT jiangjiming genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT kudrnadave genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT lipzenanna genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT pendergastthomash genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT plottchris genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT qipeng genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT saskichristophera genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT shakiroveugenev genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT simsdavid genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT sharmamanoj genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT sharmarita genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT stewartada genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT singanvasanthr genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT tangyuhong genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT thibivilliersandra genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT webberjenell genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT wengxiaoyu genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT williamsmelissa genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT wuguohongalbert genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT yoshinagayuko genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT zanematthew genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT zhangli genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT zhangjiyi genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT behrmankathrined genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT boearvidr genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT fayphilipa genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT fritschifelixb genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT jastrowjulied genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT lloydreilleyjohn genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT martinezreynajuanmanuel genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT matamalaroser genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT mitchellrobertb genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT rouquettefrancism genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT ronaldpamela genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT sahamalay genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT tobiaschristianm genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT udvardimichael genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT wingroda genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT wuyanqi genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT bartleylaurae genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT caslermichael genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT devoskatrienm genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT lowrydavidb genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT rokhsardaniels genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT grimwoodjane genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT juengerthomase genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass
AT schmutzjeremy genomicmechanismsofclimateadaptationinpolyploidbioenergyswitchgrass