Cargando…
A Novel XGBoost Method to Infer the Primary Lesion of 20 Solid Tumor Types From Gene Expression Data
PURPOSE: Establish a suitable machine learning model to identify its primary lesions for primary metastatic tumors in an integrated learning approach, making it more accurate to improve primary lesions’ diagnostic efficiency. METHODS: After deleting the features whose expression level is lower than...
Autores principales: | Chen, Sijie, Zhou, Wenjing, Tu, Jinghui, Li, Jian, Wang, Bo, Mo, Xiaofei, Tian, Geng, Lv, Kebo, Huang, Zhijian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886791/ https://www.ncbi.nlm.nih.gov/pubmed/33613644 http://dx.doi.org/10.3389/fgene.2021.632761 |
Ejemplares similares
-
Gene Expression Value Prediction Based on XGBoost Algorithm
por: Li, Wei, et al.
Publicado: (2019) -
VTP-Identifier: Vesicular Transport Proteins Identification Based on PSSM Profiles and XGBoost
por: Gong, Yue, et al.
Publicado: (2022) -
A Novel XGBoost Method to Identify Cancer Tissue-of-Origin Based on Copy Number Variations
por: Zhang, Yulin, et al.
Publicado: (2020) -
Inferring Retinal Degeneration-Related Genes Based on Xgboost
por: Xia, Yujie, et al.
Publicado: (2022) -
Identification of Cancer-Related Long Non-Coding RNAs Using XGBoost With High Accuracy
por: Zhang, Xuan, et al.
Publicado: (2019)