Cargando…

Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries

Background: Atherosclerosis manifests as a focal disease, often affecting areas with complex hemodynamics such as the carotid bifurcation. The magnitude and regularity of the hemodynamic shear stresses acting on the vessel wall are thought to generate risk patterns unique to each patient and play a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ziegler, Magnus, Alfraeus, Jesper, Good, Elin, Engvall, Jan, de Muinck, Ebo, Dyverfeldt, Petter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886794/
https://www.ncbi.nlm.nih.gov/pubmed/33614742
http://dx.doi.org/10.3389/fcvm.2020.617755
_version_ 1783651872818593792
author Ziegler, Magnus
Alfraeus, Jesper
Good, Elin
Engvall, Jan
de Muinck, Ebo
Dyverfeldt, Petter
author_facet Ziegler, Magnus
Alfraeus, Jesper
Good, Elin
Engvall, Jan
de Muinck, Ebo
Dyverfeldt, Petter
author_sort Ziegler, Magnus
collection PubMed
description Background: Atherosclerosis manifests as a focal disease, often affecting areas with complex hemodynamics such as the carotid bifurcation. The magnitude and regularity of the hemodynamic shear stresses acting on the vessel wall are thought to generate risk patterns unique to each patient and play a role in the pathogenesis of atherosclerosis. The involvement of different expressions of shear stress in the pathogenesis of carotid atherosclerosis highlights the need to characterize and compare the differential impact of the various expressions of shear stress in the atherosclerotic carotid bifurcation. Therefore, the aim of this study is to characterize and compare hemodynamic wall shear stresses (WSS) in the carotid arteries of subjects with asymptomatic atherosclerotic plaques. Shear stresses were also compared against vessel diameter and bifurcation angle to examine the relationships with the geometry of the carotid bifurcation. Methods: 4D Flow MRI and contrast-enhanced MRA data were acquired for 245 subjects with atherosclerotic plaques of at least 2.7 mm in conjunction with the Swedish CArdioPulmonary bioImage Study (SCAPIS). Following automatic segmentation and geometric analysis, time-resolved WSS and near-wall turbulent kinetic energy (nwTKE) were derived from the 4D Flow data. Whole-cycle parameters including time-averaged WSS and nwTKE, and the oscillatory shear index (OSI) were calculated. Pairwise Spearman rank-correlation analyses were used to investigate relationships among the hemodynamic as well as geometric parameters. Results: One hundred and seventy nine subjects were successfully segmented using automated tools and subsequently geometric and hemodynamic analyses were performed. Temporally resolved WSS and nwTKE were strongly correlated, ρ = 0.64. Cycle-averaged WSS and nwTKE were moderately correlated, ρ = 0.57. Cycle-average nwTKE was weakly correlated to OSI (ρ = −0.273), revealing that nwTKE provides information about disturbed flow on the vessel wall that OSI does not. In this cohort, there was large inter-individual variation for both WSS and nwTKE. Both WSS and nwTKE varied most within the external carotid artery. WSS, nwTKE, and OSI were weakly correlated to vessel diameter and bifurcation angle. Conclusion: The turbulent and mean component of WSS were examined together in vivo for the first time, and a strong correlation was found between them. nwTKE presents the opportunity to quantify turbulent wall stresses in vivo and gain insight into the effects of disturbed flow on the vessel wall. Neither vessel diameter nor bifurcation angle were found to be strongly correlated to the turbulent or mean component of WSS in this cohort.
format Online
Article
Text
id pubmed-7886794
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-78867942021-02-18 Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries Ziegler, Magnus Alfraeus, Jesper Good, Elin Engvall, Jan de Muinck, Ebo Dyverfeldt, Petter Front Cardiovasc Med Cardiovascular Medicine Background: Atherosclerosis manifests as a focal disease, often affecting areas with complex hemodynamics such as the carotid bifurcation. The magnitude and regularity of the hemodynamic shear stresses acting on the vessel wall are thought to generate risk patterns unique to each patient and play a role in the pathogenesis of atherosclerosis. The involvement of different expressions of shear stress in the pathogenesis of carotid atherosclerosis highlights the need to characterize and compare the differential impact of the various expressions of shear stress in the atherosclerotic carotid bifurcation. Therefore, the aim of this study is to characterize and compare hemodynamic wall shear stresses (WSS) in the carotid arteries of subjects with asymptomatic atherosclerotic plaques. Shear stresses were also compared against vessel diameter and bifurcation angle to examine the relationships with the geometry of the carotid bifurcation. Methods: 4D Flow MRI and contrast-enhanced MRA data were acquired for 245 subjects with atherosclerotic plaques of at least 2.7 mm in conjunction with the Swedish CArdioPulmonary bioImage Study (SCAPIS). Following automatic segmentation and geometric analysis, time-resolved WSS and near-wall turbulent kinetic energy (nwTKE) were derived from the 4D Flow data. Whole-cycle parameters including time-averaged WSS and nwTKE, and the oscillatory shear index (OSI) were calculated. Pairwise Spearman rank-correlation analyses were used to investigate relationships among the hemodynamic as well as geometric parameters. Results: One hundred and seventy nine subjects were successfully segmented using automated tools and subsequently geometric and hemodynamic analyses were performed. Temporally resolved WSS and nwTKE were strongly correlated, ρ = 0.64. Cycle-averaged WSS and nwTKE were moderately correlated, ρ = 0.57. Cycle-average nwTKE was weakly correlated to OSI (ρ = −0.273), revealing that nwTKE provides information about disturbed flow on the vessel wall that OSI does not. In this cohort, there was large inter-individual variation for both WSS and nwTKE. Both WSS and nwTKE varied most within the external carotid artery. WSS, nwTKE, and OSI were weakly correlated to vessel diameter and bifurcation angle. Conclusion: The turbulent and mean component of WSS were examined together in vivo for the first time, and a strong correlation was found between them. nwTKE presents the opportunity to quantify turbulent wall stresses in vivo and gain insight into the effects of disturbed flow on the vessel wall. Neither vessel diameter nor bifurcation angle were found to be strongly correlated to the turbulent or mean component of WSS in this cohort. Frontiers Media S.A. 2021-02-03 /pmc/articles/PMC7886794/ /pubmed/33614742 http://dx.doi.org/10.3389/fcvm.2020.617755 Text en Copyright © 2021 Ziegler, Alfraeus, Good, Engvall, de Muinck and Dyverfeldt. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cardiovascular Medicine
Ziegler, Magnus
Alfraeus, Jesper
Good, Elin
Engvall, Jan
de Muinck, Ebo
Dyverfeldt, Petter
Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries
title Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries
title_full Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries
title_fullStr Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries
title_full_unstemmed Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries
title_short Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries
title_sort exploring the relationships between hemodynamic stresses in the carotid arteries
topic Cardiovascular Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886794/
https://www.ncbi.nlm.nih.gov/pubmed/33614742
http://dx.doi.org/10.3389/fcvm.2020.617755
work_keys_str_mv AT zieglermagnus exploringtherelationshipsbetweenhemodynamicstressesinthecarotidarteries
AT alfraeusjesper exploringtherelationshipsbetweenhemodynamicstressesinthecarotidarteries
AT goodelin exploringtherelationshipsbetweenhemodynamicstressesinthecarotidarteries
AT engvalljan exploringtherelationshipsbetweenhemodynamicstressesinthecarotidarteries
AT demuinckebo exploringtherelationshipsbetweenhemodynamicstressesinthecarotidarteries
AT dyverfeldtpetter exploringtherelationshipsbetweenhemodynamicstressesinthecarotidarteries