Cargando…

Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma

Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision m...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Leland S., Wang, Lujia, Hawkins-Daarud, Andrea, Eschbacher, Jennifer M., Singleton, Kyle W., Jackson, Pamela R., Clark-Swanson, Kamala, Sereduk, Christopher P., Peng, Sen, Wang, Panwen, Wang, Junwen, Baxter, Leslie C., Smith, Kris A., Mazza, Gina L., Stokes, Ashley M., Bendok, Bernard R., Zimmerman, Richard S., Krishna, Chandan, Porter, Alyx B., Mrugala, Maciej M., Hoxworth, Joseph M., Wu, Teresa, Tran, Nhan L., Swanson, Kristin R., Li, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886858/
https://www.ncbi.nlm.nih.gov/pubmed/33594116
http://dx.doi.org/10.1038/s41598-021-83141-z
_version_ 1783651887170453504
author Hu, Leland S.
Wang, Lujia
Hawkins-Daarud, Andrea
Eschbacher, Jennifer M.
Singleton, Kyle W.
Jackson, Pamela R.
Clark-Swanson, Kamala
Sereduk, Christopher P.
Peng, Sen
Wang, Panwen
Wang, Junwen
Baxter, Leslie C.
Smith, Kris A.
Mazza, Gina L.
Stokes, Ashley M.
Bendok, Bernard R.
Zimmerman, Richard S.
Krishna, Chandan
Porter, Alyx B.
Mrugala, Maciej M.
Hoxworth, Joseph M.
Wu, Teresa
Tran, Nhan L.
Swanson, Kristin R.
Li, Jing
author_facet Hu, Leland S.
Wang, Lujia
Hawkins-Daarud, Andrea
Eschbacher, Jennifer M.
Singleton, Kyle W.
Jackson, Pamela R.
Clark-Swanson, Kamala
Sereduk, Christopher P.
Peng, Sen
Wang, Panwen
Wang, Junwen
Baxter, Leslie C.
Smith, Kris A.
Mazza, Gina L.
Stokes, Ashley M.
Bendok, Bernard R.
Zimmerman, Richard S.
Krishna, Chandan
Porter, Alyx B.
Mrugala, Maciej M.
Hoxworth, Joseph M.
Wu, Teresa
Tran, Nhan L.
Swanson, Kristin R.
Li, Jing
author_sort Hu, Leland S.
collection PubMed
description Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor—a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.
format Online
Article
Text
id pubmed-7886858
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78868582021-02-18 Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma Hu, Leland S. Wang, Lujia Hawkins-Daarud, Andrea Eschbacher, Jennifer M. Singleton, Kyle W. Jackson, Pamela R. Clark-Swanson, Kamala Sereduk, Christopher P. Peng, Sen Wang, Panwen Wang, Junwen Baxter, Leslie C. Smith, Kris A. Mazza, Gina L. Stokes, Ashley M. Bendok, Bernard R. Zimmerman, Richard S. Krishna, Chandan Porter, Alyx B. Mrugala, Maciej M. Hoxworth, Joseph M. Wu, Teresa Tran, Nhan L. Swanson, Kristin R. Li, Jing Sci Rep Article Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor—a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making. Nature Publishing Group UK 2021-02-16 /pmc/articles/PMC7886858/ /pubmed/33594116 http://dx.doi.org/10.1038/s41598-021-83141-z Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Hu, Leland S.
Wang, Lujia
Hawkins-Daarud, Andrea
Eschbacher, Jennifer M.
Singleton, Kyle W.
Jackson, Pamela R.
Clark-Swanson, Kamala
Sereduk, Christopher P.
Peng, Sen
Wang, Panwen
Wang, Junwen
Baxter, Leslie C.
Smith, Kris A.
Mazza, Gina L.
Stokes, Ashley M.
Bendok, Bernard R.
Zimmerman, Richard S.
Krishna, Chandan
Porter, Alyx B.
Mrugala, Maciej M.
Hoxworth, Joseph M.
Wu, Teresa
Tran, Nhan L.
Swanson, Kristin R.
Li, Jing
Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title_full Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title_fullStr Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title_full_unstemmed Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title_short Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title_sort uncertainty quantification in the radiogenomics modeling of egfr amplification in glioblastoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886858/
https://www.ncbi.nlm.nih.gov/pubmed/33594116
http://dx.doi.org/10.1038/s41598-021-83141-z
work_keys_str_mv AT hulelands uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT wanglujia uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT hawkinsdaarudandrea uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT eschbacherjenniferm uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT singletonkylew uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT jacksonpamelar uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT clarkswansonkamala uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT seredukchristopherp uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT pengsen uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT wangpanwen uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT wangjunwen uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT baxterlesliec uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT smithkrisa uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT mazzaginal uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT stokesashleym uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT bendokbernardr uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT zimmermanrichards uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT krishnachandan uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT porteralyxb uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT mrugalamaciejm uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT hoxworthjosephm uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT wuteresa uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT trannhanl uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT swansonkristinr uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT lijing uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma