Cargando…
Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision m...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886858/ https://www.ncbi.nlm.nih.gov/pubmed/33594116 http://dx.doi.org/10.1038/s41598-021-83141-z |
_version_ | 1783651887170453504 |
---|---|
author | Hu, Leland S. Wang, Lujia Hawkins-Daarud, Andrea Eschbacher, Jennifer M. Singleton, Kyle W. Jackson, Pamela R. Clark-Swanson, Kamala Sereduk, Christopher P. Peng, Sen Wang, Panwen Wang, Junwen Baxter, Leslie C. Smith, Kris A. Mazza, Gina L. Stokes, Ashley M. Bendok, Bernard R. Zimmerman, Richard S. Krishna, Chandan Porter, Alyx B. Mrugala, Maciej M. Hoxworth, Joseph M. Wu, Teresa Tran, Nhan L. Swanson, Kristin R. Li, Jing |
author_facet | Hu, Leland S. Wang, Lujia Hawkins-Daarud, Andrea Eschbacher, Jennifer M. Singleton, Kyle W. Jackson, Pamela R. Clark-Swanson, Kamala Sereduk, Christopher P. Peng, Sen Wang, Panwen Wang, Junwen Baxter, Leslie C. Smith, Kris A. Mazza, Gina L. Stokes, Ashley M. Bendok, Bernard R. Zimmerman, Richard S. Krishna, Chandan Porter, Alyx B. Mrugala, Maciej M. Hoxworth, Joseph M. Wu, Teresa Tran, Nhan L. Swanson, Kristin R. Li, Jing |
author_sort | Hu, Leland S. |
collection | PubMed |
description | Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor—a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making. |
format | Online Article Text |
id | pubmed-7886858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78868582021-02-18 Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma Hu, Leland S. Wang, Lujia Hawkins-Daarud, Andrea Eschbacher, Jennifer M. Singleton, Kyle W. Jackson, Pamela R. Clark-Swanson, Kamala Sereduk, Christopher P. Peng, Sen Wang, Panwen Wang, Junwen Baxter, Leslie C. Smith, Kris A. Mazza, Gina L. Stokes, Ashley M. Bendok, Bernard R. Zimmerman, Richard S. Krishna, Chandan Porter, Alyx B. Mrugala, Maciej M. Hoxworth, Joseph M. Wu, Teresa Tran, Nhan L. Swanson, Kristin R. Li, Jing Sci Rep Article Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor—a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making. Nature Publishing Group UK 2021-02-16 /pmc/articles/PMC7886858/ /pubmed/33594116 http://dx.doi.org/10.1038/s41598-021-83141-z Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Hu, Leland S. Wang, Lujia Hawkins-Daarud, Andrea Eschbacher, Jennifer M. Singleton, Kyle W. Jackson, Pamela R. Clark-Swanson, Kamala Sereduk, Christopher P. Peng, Sen Wang, Panwen Wang, Junwen Baxter, Leslie C. Smith, Kris A. Mazza, Gina L. Stokes, Ashley M. Bendok, Bernard R. Zimmerman, Richard S. Krishna, Chandan Porter, Alyx B. Mrugala, Maciej M. Hoxworth, Joseph M. Wu, Teresa Tran, Nhan L. Swanson, Kristin R. Li, Jing Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma |
title | Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma |
title_full | Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma |
title_fullStr | Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma |
title_full_unstemmed | Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma |
title_short | Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma |
title_sort | uncertainty quantification in the radiogenomics modeling of egfr amplification in glioblastoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886858/ https://www.ncbi.nlm.nih.gov/pubmed/33594116 http://dx.doi.org/10.1038/s41598-021-83141-z |
work_keys_str_mv | AT hulelands uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT wanglujia uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT hawkinsdaarudandrea uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT eschbacherjenniferm uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT singletonkylew uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT jacksonpamelar uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT clarkswansonkamala uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT seredukchristopherp uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT pengsen uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT wangpanwen uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT wangjunwen uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT baxterlesliec uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT smithkrisa uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT mazzaginal uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT stokesashleym uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT bendokbernardr uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT zimmermanrichards uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT krishnachandan uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT porteralyxb uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT mrugalamaciejm uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT hoxworthjosephm uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT wuteresa uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT trannhanl uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT swansonkristinr uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma AT lijing uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma |