Cargando…

A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization

Radioembolization (RE) with yttrium-90 ((90)Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool...

Descripción completa

Detalles Bibliográficos
Autores principales: Antón, Raúl, Antoñana, Javier, Aramburu, Jorge, Ezponda, Ana, Prieto, Elena, Andonegui, Asier, Ortega, Julio, Vivas, Isabel, Sancho, Lidia, Sangro, Bruno, Bilbao, José Ignacio, Rodríguez-Fraile, Macarena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886872/
https://www.ncbi.nlm.nih.gov/pubmed/33594143
http://dx.doi.org/10.1038/s41598-021-83414-7
Descripción
Sumario:Radioembolization (RE) with yttrium-90 ((90)Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool could be used for the optimization of the RE procedure. The hepatic artery three-dimensional (3D) hemodynamics and microsphere distribution during RE were modeled for six (90)Y-loaded microsphere infusions in three patients with hepatocellular carcinoma using a commercially available computational fluid dynamics (CFD) software package. The model was built based on in vivo data acquired during the pretreatment stage. The results of the simulations were compared with the in vivo distribution assessed by (90)Y PET/CT. Specifically, the microsphere distribution predicted was compared with the actual (90)Y activity per liver segment with a commercially available 3D-voxel dosimetry software (PLANET Dose, DOSIsoft). The average difference between the CFD-based and the PET/CT-based activity distribution was 2.36 percentage points for Patient 1, 3.51 percentage points for Patient 2 and 2.02 percentage points for Patient 3. These results suggest that CFD simulations may help to predict (90)Y-microsphere distribution after RE and could be used to optimize the RE procedure on a patient-specific basis.