Cargando…

Fungal diversity and community structure from coastal and barrier island beaches in the United States Gulf of Mexico

Fungi are an important and understudied component of coastal biomes including sand beaches. Basic biogeographic diversity data are lacking for marine fungi in most parts of the world, despite their important role in decomposition. We examined intertidal fungal communities at several United States (U...

Descripción completa

Detalles Bibliográficos
Autores principales: Walker, Allison K., Robicheau, Brent M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886894/
https://www.ncbi.nlm.nih.gov/pubmed/33594106
http://dx.doi.org/10.1038/s41598-021-81688-5
Descripción
Sumario:Fungi are an important and understudied component of coastal biomes including sand beaches. Basic biogeographic diversity data are lacking for marine fungi in most parts of the world, despite their important role in decomposition. We examined intertidal fungal communities at several United States (US) Gulf of Mexico sand beach sites using morphology and ITS rDNA terminal restriction fragment length polymorphism (T-RFLP) analyses. Fungal biogeographical patterns from sand beach detritus (wood, emergent plant [mangrove/ saltmarsh], or marine [algae, seagrass]) from Florida, Mississippi, and Texas were investigated using diversity indices and multivariate analyses. Fungal diversity increased with decreasing latitude at our study sites. Substrate type strongly influenced fungal community structure in this region, with different fungal communities on detrital marine versus emergent substrates, as well as detrital marine versus wood substrates. Thirty-five fungi were identified morphologically, including new regional and host records. Of these, 86% were unique to an individual collection (i.e., sampled once from one site). Rarefaction curves from pooled morphological data from all sites estimate the number of samples required to characterize the mycota of each substrate. As sampling occurred before the Deepwater Horizon oil spill (April-2010), our findings contribute pre-oil spill sand beach biodiversity data and marine fungal distribution trends within this economically important oceanographic region.