Cargando…
An Artificial Intelligence-Based Full-Process Solution for Radiotherapy: A Proof of Concept Study on Rectal Cancer
BACKGROUND AND PURPOSE: To develop an artificial intelligence-based full-process solution for rectal cancer radiotherapy. MATERIALS AND METHODS: A full-process solution that integrates autosegmentation and automatic treatment planning was developed under a single deep-learning framework. A convoluti...
Autores principales: | Xia, Xiang, Wang, Jiazhou, Li, Yujiao, Peng, Jiayuan, Fan, Jiawei, Zhang, Jing, Wan, Juefeng, Fang, Yingtao, Zhang, Zhen, Hu, Weigang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886996/ https://www.ncbi.nlm.nih.gov/pubmed/33614500 http://dx.doi.org/10.3389/fonc.2020.616721 |
Ejemplares similares
-
MV CBCT-Based Synthetic CT Generation Using a Deep Learning Method for Rectal Cancer Adaptive Radiotherapy
por: Zhao, Jun, et al.
Publicado: (2021) -
Evaluation of a hybrid automatic planning solution for rectal cancer
por: Peng, Jiyou, et al.
Publicado: (2022) -
Is internal target volume accurate for dose evaluation in lung cancer stereotactic body radiotherapy?
por: Peng, Jiayuan, et al.
Publicado: (2016) -
The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer
por: Guo, Hongbo, et al.
Publicado: (2021) -
Dosimetric comparisons of VMAT, IMRT and 3DCRT for locally advanced rectal cancer with simultaneous integrated boost
por: Zhao, Jun, et al.
Publicado: (2015)