Cargando…
Hardware Failure Prediction on Imbalanced Times Series Data: Generation of Artificial Data Using Gaussian Process and Applying LSTMFCN to Predict Broken Hardware
Magnetic resonance imaging (MRI) systems and their continuous, failure-free operation is crucial for high-quality diagnostics and seamless workflows. One important hardware component is coils as they detect the magnetic signal. Before every MRI scan, several image features are captured which represe...
Autores principales: | Rücker, Nadine, Pflüger, Lea, Maier, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887121/ https://www.ncbi.nlm.nih.gov/pubmed/33409816 http://dx.doi.org/10.1007/s10278-020-00411-4 |
Ejemplares similares
-
Data Acquisition Hardware
por: Cussans, David
Publicado: (2018) -
Data processing: hardware
por: International Organization for Standardization. Geneva
Publicado: (1982) -
LHCb: Hardware Data Injector
por: Delord, V, et al.
Publicado: (2009) -
Editorial: Hardware for artificial intelligence
por: Boybat, Irem, et al.
Publicado: (2022) -
Hunting for hardware changes in data centres
por: Coelho dos Santos, Miguel, et al.
Publicado: (2012)