Cargando…
Proactive Construction of an Annotated Imaging Database for Artificial Intelligence Training
Artificial intelligence (AI) holds much promise for enabling highly desired imaging diagnostics improvements. One of the most limiting bottlenecks for the development of useful clinical-grade AI models is the lack of training data. One aspect is the large amount of cases needed and another is the ne...
Autores principales: | Stadler, Caroline Bivik, Lindvall, Martin, Lundström, Claes, Bodén, Anna, Lindman, Karin, Rose, Jeronimo, Treanor, Darren, Blomma, Johan, Stacke, Karin, Pinchaud, Nicolas, Hedlund, Martin, Landgren, Filip, Woisetschläger, Mischa, Forsberg, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887127/ https://www.ncbi.nlm.nih.gov/pubmed/33169211 http://dx.doi.org/10.1007/s10278-020-00384-4 |
Ejemplares similares
-
Annotations, Ontologies, and Whole Slide Images – Development of an Annotated Ontology-Driven Whole Slide Image Library of Normal and Abnormal Human Tissue
por: Lindman, Karin, et al.
Publicado: (2019) -
TissueWand, a Rapid Histopathology Annotation Tool
por: Lindvall, Martin, et al.
Publicado: (2020) -
Mapping the Landscape of Care Providers’ Quality Assurance Approaches for AI in Diagnostic Imaging
por: Lundström, Claes, et al.
Publicado: (2022) -
2020 Vision of Digital Pathology in Action
por: Asa, Sylvia L., et al.
Publicado: (2019) -
Summary of third Nordic symposium on digital pathology
por: Lundström, Claes, et al.
Publicado: (2016)