Cargando…
Building Large-Scale Quantitative Imaging Databases with Multi-Scale Deep Reinforcement Learning: Initial Experience with Whole-Body Organ Volumetric Analyses
To explore the feasibility of a fully automated workflow for whole-body volumetric analyses based on deep reinforcement learning (DRL) and to investigate the influence of contrast-phase (CP) and slice thickness (ST) on the calculated organ volume. This retrospective study included 431 multiphasic CT...
Autores principales: | Winkel, David J., Breit, Hanns-Christian, Weikert, Thomas J., Stieltjes, Bram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887142/ https://www.ncbi.nlm.nih.gov/pubmed/33469724 http://dx.doi.org/10.1007/s10278-020-00398-y |
Ejemplares similares
-
Visual and quantitative assessment of hip implant-related metal artifacts at low field MRI: a phantom study comparing a 0.55-T system with 1.5-T and 3-T systems
por: Breit, Hanns-Christian, et al.
Publicado: (2023) -
Assessment of a Deep Learning Algorithm for the Detection of Rib Fractures on Whole-Body Trauma Computed Tomography
por: Weikert, Thomas, et al.
Publicado: (2020) -
TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images
por: Li, Yuxin, et al.
Publicado: (2017) -
Automated lung cancer assessment on 18F-PET/CT using Retina U-Net and anatomical region segmentation
por: Weikert, T., et al.
Publicado: (2023) -
Cost and Effectiveness of Fiber-Reinforced Polymer Solutions for the Large-Scale Mitigation of Seismic Risk in Reinforced Concrete Buildings
por: Del Vecchio, Ciro, et al.
Publicado: (2021)