Cargando…

A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study

Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Yi-Ning, Zheng, Wei, Wu, Qing-Qing, Hui, Tian-Chen, Sun, Nan-Nan, Chen, Guo-Bo, Tong, Yong-Xi, Bao, Su-Xia, Wu, Wen-Hao, Huang, Yi-Cheng, Yin, Qiao-Qiao, Wu, Li-Juan, Yu, Li-Xia, Shi, Ji-Chan, Fang, Nian, Shen, Yue-Fei, Xie, Xin-Sheng, Ma, Chun-Lian, Yu, Wan-Jun, Tu, Wen-Hui, Yan, Rong, Wang, Ming-Shan, Chen, Mei-Juan, Zhang, Jia-Jie, Ju, Bin, Gao, Hai-Nv, Huang, Hai-Jun, Li, Lan-Juan, Pan, Hong-Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887205/
https://www.ncbi.nlm.nih.gov/pubmed/33594193
http://dx.doi.org/10.1038/s41598-021-83054-x
_version_ 1783651929830719488
author Dai, Yi-Ning
Zheng, Wei
Wu, Qing-Qing
Hui, Tian-Chen
Sun, Nan-Nan
Chen, Guo-Bo
Tong, Yong-Xi
Bao, Su-Xia
Wu, Wen-Hao
Huang, Yi-Cheng
Yin, Qiao-Qiao
Wu, Li-Juan
Yu, Li-Xia
Shi, Ji-Chan
Fang, Nian
Shen, Yue-Fei
Xie, Xin-Sheng
Ma, Chun-Lian
Yu, Wan-Jun
Tu, Wen-Hui
Yan, Rong
Wang, Ming-Shan
Chen, Mei-Juan
Zhang, Jia-Jie
Ju, Bin
Gao, Hai-Nv
Huang, Hai-Jun
Li, Lan-Juan
Pan, Hong-Ying
author_facet Dai, Yi-Ning
Zheng, Wei
Wu, Qing-Qing
Hui, Tian-Chen
Sun, Nan-Nan
Chen, Guo-Bo
Tong, Yong-Xi
Bao, Su-Xia
Wu, Wen-Hao
Huang, Yi-Cheng
Yin, Qiao-Qiao
Wu, Li-Juan
Yu, Li-Xia
Shi, Ji-Chan
Fang, Nian
Shen, Yue-Fei
Xie, Xin-Sheng
Ma, Chun-Lian
Yu, Wan-Jun
Tu, Wen-Hui
Yan, Rong
Wang, Ming-Shan
Chen, Mei-Juan
Zhang, Jia-Jie
Ju, Bin
Gao, Hai-Nv
Huang, Hai-Jun
Li, Lan-Juan
Pan, Hong-Ying
author_sort Dai, Yi-Ning
collection PubMed
description Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population, as well as its utility in other areas. A total of 880 participants who were initially suspected of NCP from January 17 to February 19 were included. Potential predictors were selected via stepwise logistic regression analysis. The model was established based on epidemiological features, clinical manifestations, white blood cell count, and pulmonary imaging changes, with the area under receiver operating characteristic (AUROC) curve of 0.920. At a cut-off value of 1.0, the model could determine NCP with a sensitivity of 85% and a specificity of 82.3%. We further developed a simplified model by combining the geographical regions and rounding the coefficients, with the AUROC of 0.909, as well as a model without epidemiological factors with the AUROC of 0.859. The study demonstrated that the screening model was a helpful and cost-effective tool for early predicting NCP and had great clinical significance given the high activity of NCP.
format Online
Article
Text
id pubmed-7887205
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78872052021-02-18 A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study Dai, Yi-Ning Zheng, Wei Wu, Qing-Qing Hui, Tian-Chen Sun, Nan-Nan Chen, Guo-Bo Tong, Yong-Xi Bao, Su-Xia Wu, Wen-Hao Huang, Yi-Cheng Yin, Qiao-Qiao Wu, Li-Juan Yu, Li-Xia Shi, Ji-Chan Fang, Nian Shen, Yue-Fei Xie, Xin-Sheng Ma, Chun-Lian Yu, Wan-Jun Tu, Wen-Hui Yan, Rong Wang, Ming-Shan Chen, Mei-Juan Zhang, Jia-Jie Ju, Bin Gao, Hai-Nv Huang, Hai-Jun Li, Lan-Juan Pan, Hong-Ying Sci Rep Article Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population, as well as its utility in other areas. A total of 880 participants who were initially suspected of NCP from January 17 to February 19 were included. Potential predictors were selected via stepwise logistic regression analysis. The model was established based on epidemiological features, clinical manifestations, white blood cell count, and pulmonary imaging changes, with the area under receiver operating characteristic (AUROC) curve of 0.920. At a cut-off value of 1.0, the model could determine NCP with a sensitivity of 85% and a specificity of 82.3%. We further developed a simplified model by combining the geographical regions and rounding the coefficients, with the AUROC of 0.909, as well as a model without epidemiological factors with the AUROC of 0.859. The study demonstrated that the screening model was a helpful and cost-effective tool for early predicting NCP and had great clinical significance given the high activity of NCP. Nature Publishing Group UK 2021-02-16 /pmc/articles/PMC7887205/ /pubmed/33594193 http://dx.doi.org/10.1038/s41598-021-83054-x Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Dai, Yi-Ning
Zheng, Wei
Wu, Qing-Qing
Hui, Tian-Chen
Sun, Nan-Nan
Chen, Guo-Bo
Tong, Yong-Xi
Bao, Su-Xia
Wu, Wen-Hao
Huang, Yi-Cheng
Yin, Qiao-Qiao
Wu, Li-Juan
Yu, Li-Xia
Shi, Ji-Chan
Fang, Nian
Shen, Yue-Fei
Xie, Xin-Sheng
Ma, Chun-Lian
Yu, Wan-Jun
Tu, Wen-Hui
Yan, Rong
Wang, Ming-Shan
Chen, Mei-Juan
Zhang, Jia-Jie
Ju, Bin
Gao, Hai-Nv
Huang, Hai-Jun
Li, Lan-Juan
Pan, Hong-Ying
A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title_full A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title_fullStr A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title_full_unstemmed A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title_short A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
title_sort rapid screening model for early predicting novel coronavirus pneumonia in zhejiang province of china: a multicenter study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887205/
https://www.ncbi.nlm.nih.gov/pubmed/33594193
http://dx.doi.org/10.1038/s41598-021-83054-x
work_keys_str_mv AT daiyining arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT zhengwei arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wuqingqing arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT huitianchen arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT sunnannan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT chenguobo arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT tongyongxi arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT baosuxia arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wuwenhao arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT huangyicheng arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yinqiaoqiao arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wulijuan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yulixia arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT shijichan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT fangnian arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT shenyuefei arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT xiexinsheng arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT machunlian arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yuwanjun arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT tuwenhui arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yanrong arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wangmingshan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT chenmeijuan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT zhangjiajie arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT jubin arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT gaohainv arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT huanghaijun arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT lilanjuan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT panhongying arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT daiyining rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT zhengwei rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wuqingqing rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT huitianchen rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT sunnannan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT chenguobo rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT tongyongxi rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT baosuxia rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wuwenhao rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT huangyicheng rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yinqiaoqiao rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wulijuan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yulixia rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT shijichan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT fangnian rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT shenyuefei rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT xiexinsheng rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT machunlian rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yuwanjun rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT tuwenhui rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT yanrong rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT wangmingshan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT chenmeijuan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT zhangjiajie rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT jubin rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT gaohainv rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT huanghaijun rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT lilanjuan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy
AT panhongying rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy