Cargando…
A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study
Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887205/ https://www.ncbi.nlm.nih.gov/pubmed/33594193 http://dx.doi.org/10.1038/s41598-021-83054-x |
_version_ | 1783651929830719488 |
---|---|
author | Dai, Yi-Ning Zheng, Wei Wu, Qing-Qing Hui, Tian-Chen Sun, Nan-Nan Chen, Guo-Bo Tong, Yong-Xi Bao, Su-Xia Wu, Wen-Hao Huang, Yi-Cheng Yin, Qiao-Qiao Wu, Li-Juan Yu, Li-Xia Shi, Ji-Chan Fang, Nian Shen, Yue-Fei Xie, Xin-Sheng Ma, Chun-Lian Yu, Wan-Jun Tu, Wen-Hui Yan, Rong Wang, Ming-Shan Chen, Mei-Juan Zhang, Jia-Jie Ju, Bin Gao, Hai-Nv Huang, Hai-Jun Li, Lan-Juan Pan, Hong-Ying |
author_facet | Dai, Yi-Ning Zheng, Wei Wu, Qing-Qing Hui, Tian-Chen Sun, Nan-Nan Chen, Guo-Bo Tong, Yong-Xi Bao, Su-Xia Wu, Wen-Hao Huang, Yi-Cheng Yin, Qiao-Qiao Wu, Li-Juan Yu, Li-Xia Shi, Ji-Chan Fang, Nian Shen, Yue-Fei Xie, Xin-Sheng Ma, Chun-Lian Yu, Wan-Jun Tu, Wen-Hui Yan, Rong Wang, Ming-Shan Chen, Mei-Juan Zhang, Jia-Jie Ju, Bin Gao, Hai-Nv Huang, Hai-Jun Li, Lan-Juan Pan, Hong-Ying |
author_sort | Dai, Yi-Ning |
collection | PubMed |
description | Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population, as well as its utility in other areas. A total of 880 participants who were initially suspected of NCP from January 17 to February 19 were included. Potential predictors were selected via stepwise logistic regression analysis. The model was established based on epidemiological features, clinical manifestations, white blood cell count, and pulmonary imaging changes, with the area under receiver operating characteristic (AUROC) curve of 0.920. At a cut-off value of 1.0, the model could determine NCP with a sensitivity of 85% and a specificity of 82.3%. We further developed a simplified model by combining the geographical regions and rounding the coefficients, with the AUROC of 0.909, as well as a model without epidemiological factors with the AUROC of 0.859. The study demonstrated that the screening model was a helpful and cost-effective tool for early predicting NCP and had great clinical significance given the high activity of NCP. |
format | Online Article Text |
id | pubmed-7887205 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78872052021-02-18 A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study Dai, Yi-Ning Zheng, Wei Wu, Qing-Qing Hui, Tian-Chen Sun, Nan-Nan Chen, Guo-Bo Tong, Yong-Xi Bao, Su-Xia Wu, Wen-Hao Huang, Yi-Cheng Yin, Qiao-Qiao Wu, Li-Juan Yu, Li-Xia Shi, Ji-Chan Fang, Nian Shen, Yue-Fei Xie, Xin-Sheng Ma, Chun-Lian Yu, Wan-Jun Tu, Wen-Hui Yan, Rong Wang, Ming-Shan Chen, Mei-Juan Zhang, Jia-Jie Ju, Bin Gao, Hai-Nv Huang, Hai-Jun Li, Lan-Juan Pan, Hong-Ying Sci Rep Article Novel coronavirus pneumonia (NCP) has been widely spread in China and several other countries. Early finding of this pneumonia from huge numbers of suspects gives clinicians a big challenge. The aim of the study was to develop a rapid screening model for early predicting NCP in a Zhejiang population, as well as its utility in other areas. A total of 880 participants who were initially suspected of NCP from January 17 to February 19 were included. Potential predictors were selected via stepwise logistic regression analysis. The model was established based on epidemiological features, clinical manifestations, white blood cell count, and pulmonary imaging changes, with the area under receiver operating characteristic (AUROC) curve of 0.920. At a cut-off value of 1.0, the model could determine NCP with a sensitivity of 85% and a specificity of 82.3%. We further developed a simplified model by combining the geographical regions and rounding the coefficients, with the AUROC of 0.909, as well as a model without epidemiological factors with the AUROC of 0.859. The study demonstrated that the screening model was a helpful and cost-effective tool for early predicting NCP and had great clinical significance given the high activity of NCP. Nature Publishing Group UK 2021-02-16 /pmc/articles/PMC7887205/ /pubmed/33594193 http://dx.doi.org/10.1038/s41598-021-83054-x Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Dai, Yi-Ning Zheng, Wei Wu, Qing-Qing Hui, Tian-Chen Sun, Nan-Nan Chen, Guo-Bo Tong, Yong-Xi Bao, Su-Xia Wu, Wen-Hao Huang, Yi-Cheng Yin, Qiao-Qiao Wu, Li-Juan Yu, Li-Xia Shi, Ji-Chan Fang, Nian Shen, Yue-Fei Xie, Xin-Sheng Ma, Chun-Lian Yu, Wan-Jun Tu, Wen-Hui Yan, Rong Wang, Ming-Shan Chen, Mei-Juan Zhang, Jia-Jie Ju, Bin Gao, Hai-Nv Huang, Hai-Jun Li, Lan-Juan Pan, Hong-Ying A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title | A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title_full | A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title_fullStr | A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title_full_unstemmed | A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title_short | A rapid screening model for early predicting novel coronavirus pneumonia in Zhejiang Province of China: a multicenter study |
title_sort | rapid screening model for early predicting novel coronavirus pneumonia in zhejiang province of china: a multicenter study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887205/ https://www.ncbi.nlm.nih.gov/pubmed/33594193 http://dx.doi.org/10.1038/s41598-021-83054-x |
work_keys_str_mv | AT daiyining arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT zhengwei arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wuqingqing arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT huitianchen arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT sunnannan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT chenguobo arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT tongyongxi arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT baosuxia arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wuwenhao arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT huangyicheng arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yinqiaoqiao arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wulijuan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yulixia arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT shijichan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT fangnian arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT shenyuefei arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT xiexinsheng arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT machunlian arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yuwanjun arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT tuwenhui arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yanrong arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wangmingshan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT chenmeijuan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT zhangjiajie arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT jubin arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT gaohainv arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT huanghaijun arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT lilanjuan arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT panhongying arapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT daiyining rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT zhengwei rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wuqingqing rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT huitianchen rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT sunnannan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT chenguobo rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT tongyongxi rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT baosuxia rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wuwenhao rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT huangyicheng rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yinqiaoqiao rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wulijuan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yulixia rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT shijichan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT fangnian rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT shenyuefei rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT xiexinsheng rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT machunlian rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yuwanjun rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT tuwenhui rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT yanrong rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT wangmingshan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT chenmeijuan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT zhangjiajie rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT jubin rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT gaohainv rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT huanghaijun rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT lilanjuan rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy AT panhongying rapidscreeningmodelforearlypredictingnovelcoronaviruspneumoniainzhejiangprovinceofchinaamulticenterstudy |